
Forth 200x Standards Committee

Sidney Sussex College, Cambridge University, England

14–15 September 2006

Agenda

1. Apologies

2. Absences

3. Minutes of last meeting

4. Matters arising:

(a) Publication of Minutes

(b) Review of RfD/CfV process

(c) Apportionment of a Secretary

(d) Development Reports:

i. Federico de Ceballos
ii. M. Anton Ertl
iii. Peter Knaggs
iv. Stephen Pelc
v. Bill Stoddart

(e) Review of the Forth2006-2 basis document.

5. Frozen proposals for consideration

(a) EKEY return values for some keyboard events (3/e)

(b) Separate FP Stack (2/e)

(c) One-time file loading (2/e)

6. Unfinished proposals for discussion

(d) Escaped strings (S\" and .\") (2/e)

(e) Front Matter (2/e)

(f) Floating Values

(g) Enhanced local variable syntax (2/e)

(h) Represent

(i) Structures (3/e)

(j) Synonym (2/e)

(k) THROW codes and IORs

(l) XCHAR wordset (for UTF-8 and alike)

7. Copyright

8. Date of Next Meeting

9. Any Other Business

Forth 200x Standards Committee

Hotel Santemar in Santander, Spain

21–23 October 2005

Draft Minutes

Participants

Willem Botha CCS, South Africa
Federico de Ceballos University of Cantabria, Spain
M. Anton Ertl Technische Universität Wien, Austria (Chair)
N. J. Nelson Micross, England (Observer)
Dr. Peter Knaggs University of Bournemouth, England
Stephen Pelc MPE, England
Dr. Bill Stoddart University of Teesside, England (Observer)

Action on proposals

Proposal Comments Status Action
X:deferred DEFER, DEFER@, DEFER!, IS, ACTION-OF Passed 5/0/0
X:defined [DEFINED] and [UNDEFINED] Passed 5/0/0
X:parse-name PARSE-NAME Passed 5/0/0
X:extension-query Modification to ENVIRONMENT?, revised to re-

move auto-loading of requested extensions
Passed 5/0/0

Other Business

1. Integration into the standards document

Should new words be put into the established wordsets, or into new ones?

The eventual goal is to usually integrate the new words into existing wordsets with related
functionality; in some cases it may be more appropriate to create a new word set. However,
as an intermediate step the new proposals will at first be kept separate, to make it easier for
readers of the document to see what is changing.

2. How are the extension-query names reflected in the standard (if at all)?

The glossary header for new words includes the extension-query string for the extension that
proposed it. In addition, there will be a chapter or normative appendix that lists all the
extensions, their extension-query strings and the components (word definitions etc.) that it
consists of.

3. Should the tests of a proposal or the reference implementation become normative?

No. This could lead to conflicting normative sections; also, making the reference implemen-
tation normative would lead to over specification.

4. Review of the RfD/CfV process

How well is the RfD/CfV process working at generating high- quality proposals for stan-
dardisation and getting information about their popularity? What could be improved? Or
should we do something completely different?

Many of the participants were not very familiar with how well the process worked in practice,
and had no suggestions for improvements.

The (normative part of the) proposals required adoption before integrating them into the
document, but there was a widespread feeling among the participants that proposals in the
form of unambiguous instructions to the document editor (which is the form that would be
voted on by the standards committee) would be harder to understand for the CfV audience.

The resulting idea was to have two forms of the proposal, with the same content: First the
not-so-formal form used in the CfV, and later a form for integrating it into the document.

5. Official standards body

Should we run the standard through a standards body like ANSI, ISO, IEEE, etc.? If so,
which one?

Some participants consider the blessing of the future standards document by an official stan-
dards body very important, and we agreed to work towards this goal by writing the document
in the appropriate style, and by keeping documentation about all our steps. However, the
general idea was to first develop the document without involving a standards body, and deal
with them at the end.

Various candidate standards bodies were discussed; none was decided on, but it might be
that going through ANSI again might be the easiest route.

6. Chairman and Editor M. Anton Ertl was appointed as the chair of the committee unopposed.

Dr. Peter Knaggs was appointed editor unopposed.

7. Which standard documents should we start from?

Peter Knaggs has a version of dpANS99a in LATEX form, convertible into a fully hyperlinked
PDF file. However, it is yet unclear how this document differs from the ANS/ISO Forth
documents and dpANS6.

8. Integration of CfV into the Standard

How do we get from the CfV proposal to the form for integration into the document? One
opinion was that the original proponent should do it.

9. Proposal Champions

There was the opinion that a proposal (de-facto) needs a champion in the committee to
get approval by the standards committee. So, if the proponent finds a champion in the
committee, they could produce the for-the-document version of the proposal together.

10. Improvements for future standard meetings

• The participants should familiarise themselves with the proposals beforehand.

• Paper printouts of the proposals should be available at the meeting.

• Proposals should be available in the form needed for integration into the standards
document in addition to the CfV form.

• There should be a champion for the proposal in the meeting.

Action Items

1. Federico de Ceballos was asked to look into providing a proposal to cover the following topics:

• number prefixes

• 0 for NIL

• ! and @ for 16-bit and 32-bit signed and unsigned integers, bytes, octets

2. M. Anton Ertl was asked to look into the implications of the following and develop proposals
for them:

• separate FP stack

• required

• directory stuff in general

• directory handling for included and required

• key names forEKEY results

3. Stephen Pelc was asked to look into the implication of the following topics, and develop
proposals for:

• { (locals), fp locals, buffer locals

• S\" .\"
• iors can be THROWn

• SYNONYM

• structures

4. Bill Stoddart was asked to investigate the implications of allowing the parser to ignore white
space (TAB, CR, LF, and FF) in source code, and develop a proposal.

5. Peter Knaggs to contact John Hayes to obtain permission to include the validation suite into
the document and to produce a basis document based on the ANS Forth standard with the
four accepted proposals and validation suite included.

Next Meeting

It was agreed that the next meeting would take place immediately before the next euroForth
conference to be held in Cambridge, England.

A EKEY return values for some keyboard events

A.1 Author

Anton Ertl

A.2 Poll standings

A.2.1 Systems

1. Conforms to ANS Forth.

(a) iForth

(b) Gforth

(c) VFX Forth for Windows/DOS/Linux

(d) MPE Forth cross compilers

2. Already implements the proposal in full since release:

None

3. Implements the proposal in full in a development version:

None

4. Will implement the proposal in full in release.

(a) Gforth 0.7

5. Will implement the proposal in full in some future release.

(a) iForth

(b) VFX Forth for Windows/DOS/Linux

6. There are no plans to implement the proposal in full in [].

(a) 4th V3.5a (no EKEY support)

7. Will never implement the proposal in full:

(a) MPE Forth cross compilers

A.2.2 Programmers

1. I have used (parts of) this proposal in my programs:

(a) Robert Epprecht

2. I would use (parts of) this proposal in my programs if the systems I am interested in imple-
mented it:

(a) David N. Williams

(b) Graham Smith

3. I would use (parts of) this proposal in my programs if this proposal was in the Forth standard:

(a) Charles Melice

(b) David N. Williams

(c) Graham Smith

4. I would not use (parts of) this proposal in my programs.

(a) Hans Bezemer (does not use EKEY)

A.3 Change History

2006-06-23
Added EKEY>FKEY after private discussions with Neal Bridges. Added some remarks and
comments, and adapted title to satisfy commenters.

2006-05-28
Added K-INSERT, K-DELETE, K-F* and K-*-MASK. Added Sections “Programming Advice”
and “Shift Keys”. Reported comments by various people.

A.4 Problem

How do I write a portable Forth program that reacts to key presses of cursor keys (and possibly
other keys not represented by ASCII), e.g., an editor?

A.5 Proposal

EKEY>FKEY (u1 -- u2 f) “e-key to f-key” facility ext

If the keyboard event u1 corresponds to a keypress in the implementation-defined special
key set, return that key’s id u2 and true. Otherwise return u1 and false.

The following words produce the same values that EKEY EKEY>FKEY may produce when the
user presses the corresponding key. Note that, even if this extension is present, the keyboard
may lack some of the keys, or the system the capability to report them, so programs should
be written such that they also work (although less conveniently or with less functionality) if
these key numbers cannot be produced.

Use:
. . . ekey ekey>fkey if
case
k-up of . . . endof
k-f1 of . . . endof
k-left k-shift-mask or k-ctrl-mask or of . . . endof
. . .

endcase
else

. . .
then

Note: The K-. . . -MASK words produce a mask, that you can OR with the key values produced by
one of the K-. . . words to produce a value that EKEY may produce when the user presses the
corresponding key combination.

K-LEFT (-- u) facility ext

The “cursor left” key

K-RIGHT (-- u) facility ext

The “cursor right” key

K-UP (-- u) facility ext

The “cursor up” key

K-DOWN (-- u) facility ext

The “cursor down” key

K-HOME (-- u) facility ext

The “home” or “Pos1” key

K-END (-- u) facility ext

The “End” key

K-PRIOR (-- u) facility ext

The “PgUp” or “Prior” key

K-NEXT (-- u) facility ext

The “PgDn” or “Next” key

K-INSERT (-- u) facility ext

The “Insert” key

K-DELETE (-- u) facility ext

The “Delete” key

K-F1 (-- u) facility ext

The “F1” key

K-F2 (-- u) facility ext

The “F2” key

K-F3 (-- u) facility ext

The “F3” key

K-F4 (-- u) facility ext

The “F4” key

K-F5 (-- u) facility ext

The “F5” key

K-F6 (-- u) facility ext

The “F6” key

K-F7 (-- u) facility ext

The “F7” key

K-F8 (-- u) facility ext

The “F8” key

K-F9 (-- u) facility ext

The “F9” key

K-F10 (-- u) facility ext

The “F10” key

K-F11 (-- u) facility ext

The “F11” key

K-F12 (-- u) facility ext

The “F12” key

K-SHIFT-MASK (-- u) facility ext

Mask for the shift key

K-CTRL-MASK (-- u) facility ext

Mask for the ctrl key

K-ALT-MASK (-- u) facility ext

Mask for the alt key

A.6 Remarks

A.6.1 EKEY>FKEY

Introducing that word leaves more freedom to implementations about the representation of EKEY
results. In particular, based on private discussions, it would be easier for Neal Bridges to implement
the proposal in Quartus Forth. Systems that do not need this additional freedom could use the
same representation for the EKEY and EKEY>FKEY results; a simple implementation of EKEY>FKEY
on such a system would be:

: EKEY>FKEY (u1 -- u2 flag)
dup ekey>char nip 0= ;

A.6.2 EKEY return values

There was a discussion about what the standard says about EKEY return values. In particular,
I interpret the standard’s non-specification of a lifetime for the return value as meaning that it
has unlimited lifetime and thus an implementation where the return value is an address of an
overwritable buffer is non-standard; whereas Elizabeth Rather believes that the implementation-
defined nature of the result would make such an EKEY implementation standard. However, no such
implementation of EKEY is known, and a clarification of that aspect is desirable. However, with
the introduction of EKEY>FKEY the proposal could even be implemented on a system with such an
EKEY implementation, so the place for the clarification is probably not in this proposal (unless we
take EKEY>FKEY out again).

A.6.3 Programming advice

Note that, even if a Forth system supports these words, many environments do not have or do not
report all these keys and key combinations, so it is a good idea to write your program such that
it is still useful even if these keys and key combinations cannot be pressed or are not recognized.

A.6.4 Shift keys

Note that, as defined, the shift key masks defined above are only useful for recognizing shifted
cursor and function keys, because these are the only keys that EKEY return values are defined for.
E.g., we cannot program Forth to recognize ALT-T, because no EKEY return value for T has been
defined.

A.6.5 Other Keys

Gforth and PFE have words K1. . . K10 for the function/keypad keys; they also contain S-K1. . . S-K10
for shifted function/keypad keys, but they don’t work as widely. Moreover, Gforth (but not PFE)
also has K-INSERT, K-DELETE, K11, K12, S-K11 and S-K12. Should any of these words be added to
this proposal? After the first RfD, several people were in favour of adding such words and nobody
spoke out against, so I added the words after K-NEXT. If you don’t like such words in general, or
would like them, but differently, please speak up now.

A.7 Experience

These words have been implemented for several years in PFE and Gforth. Several editors have
been published in ANS Forth that would have profited from these words. Also, the original version
of the MiniSpreadsheet1 hardcoded the values for the keys for one platform; I then fixed it to use
the cursor-key words proposed above.

A.8 Implementation and Tests

The implementation is closely tied to the implementation of EKEY, and therefore unportable, so I
don’t provide a reference implementation. However, you can look at the Gforth implementation2

of EKEY and many of these words (based on ANSI terminal escape sequences).

Tests3.
1http://wiki.forthfreak.net/index.cgi?MiniSpreadsheet
2http://b2.complang.tuwien.ac.at/cgi-bin/cvsweb/c̃heckout/̃gforth/ekey.fs?rev=HEAD;content-

type=text%2Fplain;cvsroot=gforth
3http://www.complang.tuwien.ac.at/forth/ansforth/tests/ekeys.fs

A.9 Comments

• Alex McDonald writes:

Win32Forth provides;

k home k up k pgup k left k right k end k down k pgdn k insert k delete k scroll

plus k 1 through k 12 for function keys.

+k control +k alt +k shift provide a mask when these keys are depressed with any of the
above.

• Marcel Hendrix writes that iForth implements this functionality, but with different key
names.

• Mitch Bradley reports that the current proposal cannot be implemented in a useful way on
the current Quartus Forth even though the platform has some arrow buttons. Quartus Forth
implements an EKEY that just returns an event type (and requires the use of another word
to get more information).

• Charles Melice and Alex McDonald would prefer K-F1 etc. for function keys, and masks for
shifted keys etc.

• Charles Melice would also like to see some events defined for mouse events. There was some
discussion on how that should be done; however, it will not be done in this proposal.

• Sam Falvo also has some interesting suggestions in this area that might be interesting for a
future RfD.

• Charles Melice also proposed having a word EKEY>FKEY and standardizing the numeric FKEY
values to make it easier to save, exchange, and replay these keys between systems.

• Robert Epprecht uses these words and would like to have them available in different Forth
implementations. Also, he would like to see the words for the function keys.

B Separate FP Stack

B.1 Author

Anton Ertl

B.2 Poll standings

B.2.1 Systems

1. Conforms to ANS Forth.

(a) Mops/PowerMops (Mike Hore)

(b) ForthCAD (Charles Melice)

(c) iForth (Marcel Hendrix)

(d) bigForth (Bernd Paysan)

(e) Gforth (Anton Ertl)

(f) VFX Forth for Windows/DOS/Linux (Stephen Pelc)

(g) MPE Forth cross compilers

(h) MacForth/Power MacForth/Carbon MacForth (Ward McFarland)

2. Already implements the proposal in full since release:

(a) PowerMops 3

(b) iForth 1

(c) bigForth 1.0

(d) Gforth 0.1

(e) VFX Forth for Windows/DOS/Linux 3.0

(f) MacForth/Power MacForth/Carbon MacForth since at least 10 years

3. Implements the proposal in full in a development version:

None

4. Will implement the proposal in full in release.

(a) MPE Forth cross compilers 7.0

5. Will implement the proposal in full in some future release.

(a) ForthCAD

6. There are no plans to implement the proposal in full in.

(a) 4th V3.5a (no FLOAT wordset at all)

7. Will never implement the proposal in full.

None

B.2.2 Programmers

1. I have used (parts of) this proposal in my programs:

(a) David N. Williams

(b) Charles Melice

(c) Julian V. Noble

(d) Bernd Paysan

(e) Anton Ertl

(f) Stephen Pelc

2. I would use (parts of) this proposal in my programs if the systems I am interested in imple-
mented it:

(a) David N. Williams

(b) Charles Melice

(c) Stephen Pelc

(d) Tessa Celine Bonting

3. I would use (parts of) this proposal in my programs if this proposal was in the Forth standard:

(a) David N. Williams

(b) Stephen Pelc

4. I would not use (parts of) this proposal in my programs.

(a) Hans Bezemer (does not use FP)

B.2.3 Informal results

• Charles Melice has developed a program that allows running his unified-stack 1-cell-per-fp
legacy code on a separate-stack system.

• Julian V. Noble would never use a system with a unified stack.

• BigForth: The 68k software FP implementation of bigFORTH containes an optional mode
where the stack is unified. The x86 version uses the native stack of the x87 FPU, and didn’t
offer this unified stack option.

B.3 Change History

2006-07-04
No normative changes. Updated Section Experience with ForthCAD material. Added Tests.

2006-06-27
No normative changes. Updated Section Experience with material from feedback on the 1st
RfD. Added Section Remarks.

B.4 Problem

Writing floating-point code such that it can run on a unified stack is such a pain that most
programmers don’t do it.

B.5 Proposal

The floating-point stack is separate from the data stack.

Typical Use

\ from <126r7o1srr8aof0@news.supernews.com>
: square (f - f’) fdup f* ;
: pow (n) (f - f’)
?dup 0= if fdrop 1e0 exit then
dup 1 = if drop exit then
2 /mod fdup square recurse fswap recurse f* ;

So what is the actual proposal? (Ed)

B.6 Remarks

Unified stacks with a specified size for FP values

While many agreed with the ”pain” assessment above, several comments pointed out that the
unified stack is not as big a pain if the programmer programs for a specific on-stack size of FP
values (e.g., double-cells), if that size is not larger than double-cells.

However, such a dependency on a specific size of FP values reduces the portability even to other
systems with a unified stack (and maybe even to other platforms for the same system) as well as
eliminating the portability to systems with a separate FP stack.

B.6.1 Temporary storage

C. G. Montgomery proposed adding words for transferring values between the FP stack and the
data stack for temporary storage. The return stack seems to be a better place for temporary
storage, though. Marcel Hendrix would prefer to see FP locals instead. Since there is a promise
for an upcoming proposal for FP locals, I will not propose any such words in this proposal.

B.7 Experience

Most ANS Forth systems that I know implement a separate floating-point stack. MPE’s embed-
ded systems use a unified stack (their desktop system use separated stacks). Kforth implements
a subset of ANS Forth subset and has a unified FP stack. PFE implements ANS Forth and has
an optional module for a unified stack (it also supports a separate FP stack). ForthCAD, COLD-
FORTH and uCFORTH use a unified stack (ANS Forth status unknown). ForthCAD originally
used this to make the implementation of the C call interface simpler on the IA-32 architecture,
and sticks with it because there is too much code that relies on this.

All ANS Forth programs dealing with FP numbers that I know except code written specifically
for kforth just assume a separate floating-point stack, including the Forth Scientific Library.

B.8 Implementation and Tests

• Incomplete Implementation4 the main missing piece is the (system-specific) text-interpreter
floating-point input.

4http://www.forth200x.org/reference-implementations/fp-stack.fs

• Tests5

5http://www.complang.tuwien.ac.at/forth/ansforth/tests/fp-stack.fs

C One-time file loading

C.1 Author

Anton Ertl

C.2 Poll standings

C.2.1 Systems

1. Conforms to ANS Forth.

(a) Gforth

(b) VFX Forth

(c) Forth6 cross compilers (Stephen Pelc)

2. Already implements the proposal in full since release:

(a) Gforth, all releases

3. Implements the proposal in full in a development version:

None.

4. Will implement the proposal in full in release.

(a) VFX Forth 4

5. Will implement the proposal in full in some future release.

(a) Forth6 cross compilers

6. There are no plans to implement the proposal in full.

(a) 4th V3.5a (Hans Bezemer)

(b) MacForth (Ward McFarland)

7. Will never implement the proposal in full:

None.

C.2.2 Programmers

1. I have used (parts of) this proposal in my programs:

(a) Hans Bezemer

(b) Anton Ertl

(c) Robert Epprecht

(d) David N. Williams

2. I would use (parts of) this proposal in my programs if the systems I am interested in imple-
mented it:

(a) Stephen Pelc

3. I would use (parts of) this proposal in my programs if this proposal was in the Forth standard:

(a) Stephen Pelc

(b) Charles Mélice

4. I would not use (parts of) this proposal in my programs.

None.

C.3 Change History

2006-02-12
Added discussion on whether REQUIRED should re-include files that were INCLUDED.

2006-01-21

• Normative: Added memory allocation restriction to INCLUDED (and a related section in
the informative parts).

• Normative: After forgetting the contents of a file with FORGET or a marker, REQUIRED
will include the file again (plus an informative section on that; the reference implemen-
tation does not implement that yet).

• Normative: Put the new words in the FILE EXT word set.

• Normative: replaced “perform word” with “perform the function of word”.

• Recorded answers to the question about the name of REQUIRE / NEEDS / REQUIRES,
and corrected information about REQUIRES in MPE systems (it does not perform what
is proposed).

• Added a section on INCLUDE interacting with BASE.

• Added information about features to increase the efficiency of the C approach.

2001-08-14
Changed stack effect from (i*x c-addr u -- j*x) to (i*x c-addr u -- i*x), following a
suggestion from Guido Draheim, and related changes in the text.

C.4 Problem

A library is needed by several parts of the source code (e.g., in other libraries), but it should be
loaded only once.

C.5 Proposal

Add the following restriction to the definition of INCLUDED:

INCLUDED may allocate memory in data space before it starts interpreting the file.

In the definition of INCLUDED, change “Text interpretation begins at the file position where the
next file read would occur” into “Text interpretation begins at the start of the file”.

Define the following words:

REQUIRED (i ∗ x c − addr u -- i ∗ x) FILE-EXT

If the file specified by c − addr u has been INCLUDED or REQUIRED already, but not
between the definition and execution of a marker (or equivalent usage of FORGET),
discard c − addr u; otherwise, perform the function of INCLUDED.

An ambiguous condition exists if a file is REQUIRED while it is being REQUIRED or
INCLUDED.

An ambiguous condition exists, if a marker is defined outside and executed inside a file
or vice versa, and the file is REQUIRED again.

An ambiguous condition exists if the same file is REQUIRED twice using different names
(e.g., through symbolic links), or different files with the same name are REQUIRED (by
doing some renaming between the invocations of REQUIRED).

An ambiguous condition exists if the stack effect of including the file is not (i ∗ x --
i ∗ x).

REQUIRE (i ∗ x “name” -- i ∗ x) FILE-EXT

Skip leading white space and parse name delimited by a white space character. Push
the address and length of the name on the stack and perform the function of REQUIRED.

INCLUDE (i ∗ x “name” -- j ∗ x) FILE-EXT

Skip leading white space and parse name delimited by a white space character. Push
the address and length of the name on the stack and perform the function of INCLUDED.

C.6 Typical Use

... s" filename" required ...
require filename
include filename

C.7 Remarks

C.7.1 Changes to INCLUDED

The added restriction codifies an existing environmental restriction in widely-used systems (at
least Win32Forth and MPE’s systems) that has not led to problems in programs. In the context
of REQUIRED this restriction allows a simpler implementation. In effect this restriction means that
colon definitions or contiguous data regions cannot extend across calls to INCLUDED (one can use
INCLUDE-FILE instead).

As an alternative to adding this restriction, we could drop the requirement that REQUIRED does
not re-include files that were INCLUDED. People probably do not use REQUIRED and INCLUDED on
the same file anyway. The disadvantages of this alternative are: the result is probably confusing
in cases where people do use REQUIRED and INCLUDED on the same file; and AFAIK all systems
that implement REQUIRED (or similar words) support that requirement.

Should we also add a restriction that allows INCLUDED to allocate data space after the interpretation
of the included file ends?

The change in the definition fixes an obvious copy-and-paste error.

C.7.2 REQUIRED syntax

The syntax follows the good example of INCLUDED in being non-parsing. That syntax allows more
flexible uses and it allows REQUIREing filenames containing spaces.

C.7.3 INCLUDE

INCLUDE is implemented and used widely, so we might just as well standardize it (and why not
in this RfD). OTOH, once REQUIRE is widely implemented, it might see much less use. If enough
people argue against its inclusion, I will remove it from this RfD.

C.7.4 INCLUDE and BASE

There are supposedly systems that set BASE to decimal at the start of INCLUDE. One could accom-
modate such systems by adding a restriction:

An ambiguous condition exists if the value of BASE is not (decimal) ten.

However, IMO it is confusing if INCLUDE silently changes BASE and INCLUDED does not, so I will
only add this restriction if somebody can name such a system (that is a necessary, not a sufficient
condition).

A better approach IMO is to warn the user if BASE is not decimal when starting INCLUDE, and
if the BASE has changed when ending INCLUDE (and probably for INCLUDED and INCLUDE-FILE,
too).

C.7.5 REQUIRE

Given what happened with INCLUDED and INCLUDE, we might just as well provide a parsing variant
of REQUIRED right from the start. However, the essential word is REQUIRED, the parsing variant is
just syntactic sugar.

C.7.6 REQUIRE name

The name is modelled on the relation between INCLUDED and INCLUDE, and also on Emacs Lisp’s
require. However, this word has been implemented under other names: NEEDS in various systems,
REQUIRES in PFE.

What’s worse, some systems have used these names for other purposes: MPE’s systems have
REQUIRES with a different meaning, PFE has a NEEDS with a different meaning, and ciforth has
a REQUIRE with a different meaning (but ciforth’s author thinks that ciforth is not significant
and has promised to rename/drop his word if consensus on using REQUIRE for another purpose is
reached).

So, which of the names would you prefer? Please post or mail me your preferences, and I will
collect them and then decide on the final name, if any. Also, if you know of other conflicts for
these names, please let me know.

Results from the RfDs

• Stephen Pelc (MPE) can live with REQUIRED and REQUIRE. REQUIRES would conflict with
MPE’s systems.

• Alex McDonald (Win32Forth) can live with REQUIRE currently Win32Forth supports NEEDS
and REQUIRES (with ideas to drop REQUIRES).

C.7.7 Why not use load screens?

Some people prefer to have a single file that contains INCLUDEs for all the other files in a program.
These people do not need REQUIRED.

However, other people want to build programs out of reusable (and possibly independently devel-
oped) libraries, and the load-screen approach causes increased maintenance work in this context:
E.g., if a new version of a library needs to load an additional sublibrary, the load screens of all
programs using the library would have to be changed. In contrast, with REQUIRED, the library
REQUIREs the sublibrary itself, and REQUIRED makes sure that it is not loaded twice.

C.7.8 What about the C approach

Some might say: Why not use the C solution: The C solution to this problem is putting a wrapper
like

#ifndef FILE_H
#define FILE_H
...
#endif

around every source file. This is inefficient (the whole file has to be read again, unless the compiler
does some pretty sophisticated stuff), and requires cooperation from the author of the file (which
is problematic, because not the author, but the users of the file have the trouble).

SwiftForth has a word \\that can be used to mostly eliminate the inefficiency mentioned above:
it ends interpreting the current file; Win32Forth has an equivalent word \s. SwiftForth also has
a word OPTIONAL that supports the C-like technique.

C.7.9 Using the dictionary for implementation

One thing that could be done to make the implementations simpler is to specify that INCLUDED
and REQUIRED can change the dictionary before or after text-interpreting the file; that would allow
the implementation to store the names of the included files in a wordlist. The downside would
be that INCLUDED could not be used for including parts of colon definitions or the data part of
CREATEd words. However, such uses are probably rare (if they occur at all in existing code), and
they can still be performed (although in a more cumbersome way) with INCLUDE-FILE. What do
you think?

C.7.10 What about MARKER and FORGET?

The proposed behaviour is probably what the users are expecting, and AFAIK all implementa-
tions of such words already support that behaviour. The ambiguous condition allows different
implementation approaches, and the usage that is explicitly unspecified in this way probably does
not matter to users.

C.8 Experience

Many systems have REQUIRED, REQUIRE, REQUIRES, and/or NEEDS. Many systems contain INCLUDE.
The occurrences of these words in the Gforth sources are:

occurences regexp
88 ”ˆrequire ”
45 ”ˆinclude ”
4 ” included$”
2 ” required$”

C.9 Implementation and Tests

• Reference implementation6 (does not deal as proposed with markers and FORGET).

• Tests7.

C.10 Comments

• Albert van der Horst suggested that REQUIRE should in some way be able to use LOAD.
However, I believe that such a word, if needed, should have a different name.

• Hans Bezemer writes that 4th has a parsing [NEEDS (apparently used like ”[NEEDS file name
]”). 4th also has INCLUDE.

• Stephen Pelc:

In order to ease use of library code, it may be as well to consider specifying how
the following items are handled when the file/source is INCLUDED: BASE decimal?
search order
. . .

• Phil Budne writes that SNOBOL4 has a -INCLUDE that behaves like the proposed REQUIRE.

from an earlier (Pre-RfD) version of the proposal

• Michael L. Gassanenko:

Yes. I do use NEEDS.

• Peter Knaggs:

Perl introduced a version of REQUIRED some time ago that works exactly in this
manner. I agree very much with its usefulness, indeed it would allow a standard
“library” model. Having said that, it can be defined using standard ANS.

• Guido Draheim:

– Both Forth.com’s Swiftforth and MPE’s ProforthVFX have defined ‘requires‘ as the
selfparsing version of ‘required‘, and they use it [It turns out that REQUIRES in MPE’s
systems has a different meaning]. PFE will adopt this in the next version (> 0.30.30)

– The specification is non-deterministic in its stack effect — the user of ‘required‘ has
no way to check in advance if a file will get ‘included‘. Many systems use a word
like ‘loaded¿ but it can not as easily specified for many systems just as it is done for
‘required‘ itself, where the form of ‘requires‘ has found wide acceptance. It may be
useful to allow the use CSP-like techniques to ensure a deterministic stack-effect, and
it may be useful to recommend that at least a warning message is shown for the case
of stack-depth differences.

6http://www.complang.tuwien.ac.at/forth/ansforth/reference-implementations/required.fs
7http://www.complang.tuwien.ac.at/forth/ansforth/tests/required.fs

D Escaped strings

D.1 Author

Stephen Pelc

D.2 Change History

2006-08-22 Updated solution section.

2006-08-21 First draft.

D.3 Problem

The word S" 6.1.2165 is the primary word for generating strings. In more complex applications,
it suffers from several deficiencies:

1. the S" string can only contain printable characters,

2. the S" string cannot contain the ’"’ character,

3. the S" string cannot be used with wide characters as dicussed in the Forth 200x internation-
alisation and XCHAR proposals.

D.4 Current practice

At least SwiftForth, gForth and VFX Forth support S\" with very similar operations. S\" behaves
like S", but uses the ’\’ character as an escape character for the entry of characters that cannot
be used with S".

This technique is widespread in languages other than Forth.

It has benefit in areas such as

1. construction of multiline strings for display by operating system services,

2. construction of HTTP headers,

3. generation of GSM modem control strings.

The majority of current Forth systems contain code, either in the kernel or in application code,
that assumes char=byte=au. To avoid breaking existing code, we have to live with this practice.

D.5 Considerations

We are trying to integrate several issues:

1. no/least code breakage

2. minimal standards changes

3. variable width character sets

4. small system functionality

Item 1 is about the common char=byte=au assumption.

Item 2 includes the use of COUNT to step through memory and the impact of char in the file word
sets.

Item 3 has to rationalise a fixed width serial/comms channel with 1ldots4 byte characters, e.g.
UTF-8

Item 4 should enable 16 bit systems to handle UTF-8 and UTF-32.

The basis of my current approach is to use the terminology of primitive characters and extended
characters. A primitive character (called a pchar here) is a fixed-width unit handled by EMIT
and friends. It corresponds to the current ANS definition of a character. An extended character
(called an xchar here) consists of one or more primitive characters and represents the encoding
for a “display unit”. A string is represented by caddr/len in terms of primitive characters.

The consequences of this are:

1. No existing code is broken.

2. Most systems have only one keyboard and only one screen/display unit, but may have several
additional comms channels. The impact of a keyboard driver having to convert Chinese or
Russian characters into a (say) UTF-8 sequence is minimal compared to handling the key
stroke sequences. Similarly on display.

3. Comms channels and files work as expected.

4. 16-bit embedded systems can handle all character widths as they are described as strings.

5. No conflict arises with the XCHARs proposal.

Multiple encodings can be handled if they share a common primitive character size — nearly all
of these are described in terms of octets: TCP/IP, UTF-8, UTF-16, UTF-32, . . .

The XCHARs proposal can be used to handle extended characters on the stack. XEMIT and
friends allow us to handle some additional odd-ball requirements such as 9-bit control characters,
e.g. for the MDB bus used by vending machines.

D.6 Solution

To ease discussion we refer to character handled by C@, C! and friends as “primitive characters” or
pchars. Characters that may be wider than a pchar are called “extended characters” or xchars.
These are compatible with the XCHARs proposal. This proposal does note requires systems to
handle xchars, but does not disenfranchise those that do.

S\" is used like S" but treats the ’\’ character specially. One or more characters after the ’\’
indicate what is substituded. The following list is what is currently available in the Forth systems
surveyed.

\a BEL alert, ASCII 7
\b BS backspace, ASCII 8
\e ESC not in C99, ASCII 27
\f FF form feed, ASCII 12
\l LF ASCII 10
\m CR/LF pair ASCII 13, 10 — for HTML etc.
\n newline CRLF for Windows/DOS, LF for Unices
\q double-quote ASCII 34
\r CR ASCII 13
\t HT tab, ASCII 9
\v VT ASCII 11
\z NUL ASCII 0
\" ”
\[0-7]+ Octal numerical character value, finishes at the first non-octal character
\x[0-9a-f]+ Hex numerical character value, finishes at the first non-hex character
\\ backslash itself
\ before any other character represents that character

The following three of these cause parsing and readability problems. As far as I know, requiring
characters to come in 8 bit units will not upset any systems. Systems with characters less than 7
bits are non-compliant, and I know of no 7 bit CPUs. All current systems use character units of
8 bits or more.
\[0-7]+ Octal numerical character value, finishes at the first non-octal character
\x[0-9a-f]+ Hex numerical character value, finishes at the first non-hex character

Why do we need two representations, both of variable length? This proposal selects the hex-
adecimal representation, requiring two hex digits. A consequence of this is that xchars must be
represented as a sequence of pchars. Although initially seen as a problem by some people, it
avoids at least the following problems:

1. Endian issues when transmitting an xchar, e.g. big-endian host to little-endian comms
channel

2. Issue when an xchar is larger than a cell, e.g. UTF-32 on a 16 bit system.

3. Does not have problems in distinguishing the end of the number from a following character
such as ‘0’ or ‘A’.

At least one system (Gforth) already supports UTF-8 as it’s native character set, and one system
(JaxForth) used UTF-16. These systems are not affected.

\ before any other character represents that character

This is an unnecessary general case, and so is not mandated. By making it an ambiguous condition,
we do not disenfranchise existing implementation, and leave the way open for future extensions.

D.7 Proposal

6.2.xxxx S\" s-slash-quote CORE EXT

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (”ccc〈quote〉” --)

Parse ccc delimited by ” (double-quote), using the translation rules below. Append the
run-time semantics given below to the current definition.

Translation rules: Characters are processed one at a time and appended to the compiled string.
If the character is a ’\’ character it is processed by parsing and substituting one or more
characters as follows:
\a BEL alert, ASCII 7
\b BS backspace, ASCII 8
\e ESC not in C99, ASCII 27
\f FF form feed, ASCII 12
\l LF ASCII 10
\m CR/LF pair ASCII 13, 10
\n newline implementation dependent newline e.g., CR/LF, LF or LF/CR
\q double-quote ASCII 34
\r CR ASCII 13
\t HT tab, ASCII 9
\v VT ASCII 11
\z NUL ASCII 0
\" ”
\xAB A and B are Hexadecimal numerical characters.

The resulting character is the conversion of these two characters.
\\ backslash itself
\ before any other character constitutes an ambiguous condition.

Run-time: (-- c − addr u)
Return c− addr and u describing a string consisting of the translation of the characters ccc.
A program shall not alter the returned string.

See: 3.4.1 Parsing, 6.2.0855 C", 11.6.1.2165 S", A.6.1.2165 S".

D.8 Labelling

• ENVIRONMENT? impact
name stack conditions

• Ambiguous conditions occur:

– If a hex value is more than two characters

– If \x is not followed by by two hexadecimal characters

– If \is followed by a character other than those listed in S\" (a, b, e, f, l, m, n, q, r, t,
v, z, ”, x or \).

D.9 Reference Implementation

(as yet untested)

Taken from the VFX Forth source tree and modified to remove most implementation dependencies.
Assumes the use of the # and $ numeric prefices to indicate decimal and hexadecimal respectively.

decimal

: PLACE \ c-addr1 u c-addr2 --
\ *G Copy the string described by c-addr1 u to a counted string at
\ ** the memory address described by c-addr2.
2dup 2>r \ write count last
1 chars + swap move
2r> c! \ to avoid in-place problems

;

: $,\ caddr len --
\ *G Lay the string into the dictionary at *\fo{HERE}, reserve
\ ** space for it and *\fo{ALIGN} the dictionary.
dup >r
here place
r> 1 chars + allot
align

;

: addchar \ char string --
\ *G Add the character to the end of the counted string.
tuck count + c!
1 swap c+!

;

: append \ c-addr u $dest --
\ *G Add the string described by C-ADDR U to the counted string at
\ ** $DEST. The strings must not overlap.
>r
tuck r@ count + swap cmove \ add source to end
r> c+! \ add length to count

;

: extract2H \ caddr len -- caddr’ len’ u
\ *G Extract a two-digit hex number in the given base from the
\ ** start of the* string, returning the remaining string
\ ** and the converted number.
base @ >r hex
0 0 2over >number 2drop drop
>r 2 chars /string r>
r> base !

;

create EscapeTable \ -- addr
\ *G Table of translations for \a..\z.
7 c,\ \a
8 c,\ \b
char c c,\ \c
char d c,\ \d
#27 c,\ \e
#12 c,\ \f
char g c,\ \g
char h c,\ \h
char i c,\ \i
char j c,\ \j
char k c,\ \k
#10 c,\ \l
char m c,\ \m
#10 c,\ \n (Unices only)
char o c,\ \o
char p c,\ \p
char " c, \ \q

#13 c,\ \r
char s c,\ \s
9 c,\ \t
char u c,\ \u
#11 c,\ \v
char w c,\ \w
char x c,\ \x
char y c,\ \y
0 c,\ \z

create CRLF$ \ -- addr ; CR/LF as counted string
2 c, #13 c, #10 c,

internal
: addEscape \ caddr len dest -- caddr’ len’
\ *G Add an escape sequence to the counted string at dest,
\ ** returning the remaining string.
over 0= \ zero length check
if drop exit endif
>r \ -- caddr len ; R: -- dest
over c@ [char] x = if \ hex number?
1 chars /string extract2H r> addchar exit

endif
over c@ [char] m = if \ CR/LF pair?
1 chars /string #13 r@ addchar #10 r> addchar exit

endif
over c@ [char] n = if \ CR/LF pair?
1 chars /string crlf$ count r> append exit

endif
over c@ [char] a [char] z 1+ within if
over c@ [char] a - EscapeTable + c@ r> addchar

else
over c@ r> addchar

endif
1 chars /string

;
external

: parse\" \ caddr len dest -- caddr’ len’
\ *G Parses a string up to an unescaped ’"’, translating ’\’
\ ** escapes to characters much as C does. The
\ ** translated string is a counted string at *\i{dest}
\ ** The supported escapes (case sensitive) are:
\ *D \a BEL (alert)
\ *D \b BS (backspace)
\ *D \e ESC (not in C99)
\ *D \f FF (form feed)
\ *D \l LF (ASCII 10)
\ *D \m CR/LF pair - for HTML etc.
\ *D \n newline - CRLF for Windows/DOS, LF for Unices
\ *D \q double-quote
\ *D \r CR (ASCII 13)
\ *D \t HT (tab)
\ *D \v VT

\ *D \z NUL (ASCII 0)
\ *D \" "
\ *D \xAB Two char Hex numerical character value
\ *D \\ backslash itself
\ *D \ before any other character represents that character
dup >r 0 swap c! \ zero destination
begin \ -- caddr len ; R: -- dest
dup
while
over c@ [char] " <>\ check for terminator
while
over c@ [char] \ = if \ deal with escapes
1 /string r@ addEscape

else \ normal character
over c@ r@ addchar 1 /string

endif
repeat then
dup \ step over terminating "
if 1 /string endif
r> drop

;

: readEscaped \ "string" -- caddr
\ *G Parses an escaped string from the input stream according to
\ ** the rules of *\fo{parse\"} above, returning the address
\ ** of the translated counted string in *\fo{PAD}.
source >in @ /string tuck \ -- len caddr len
pad parse\" nip
- >in +!
pad

;

: S\" \ "string" -- caddr u
\ *G As *\fo{S"}, but translates escaped characters using
\ ** *\fo{parse\"} above.
readEscaped count state @ if
compile (s") $,

then
; IMMEDIATE

D.10 Test Cases

TBD.

E Front Matter

E.1 Author

Peter Knaggs

E.2 Change History

2006-09-08 Modified to reflect that the new document is based on the final draft of the 1999
ANSI review.
Added sections 7 and 8.
Modified the proposed Forward.

2006-08-30 First draft.

E.3 Problem

The basis document, as published, is too heavily based on the original ANS document. The first
two parts of the proposal update appendix B to include reference to the ANS and ISO standards.
Much of appendix B need to be updated, but I will leave that to the interested parties.

The front matter refers too directly to the ANS procedure. Parts 4 and 5 replace the front matter
with material more appropriate to the aim of the document. Part 5 is a description of the RfD/CfV
procedure for including proposals into the basis document / revised standard.

Finally part 6 is a copy of the minutes from the first standards meeting. Whether this should be
included in the basis document, let alone in the front matter is a topic of debate. Can we simply
leave this on the web site, or do we need a printed record. Is there any ware else we can publish
the minutes? JFAR or the ACM are both possibilities.

E.4 Proposal

1. Remove the last line of the second paragraph in Appendix B.

“Several members of the Forth Standards Team have also been members of the X3J14
Technical Committee.”

2. Add the following to the end of the “Industry standards” section of Appendix B.

The following standards where developed under the control of the ANSI. The
committee drawing up the ANSI standard included several members of the Forth
Standards Team.
ANSI X3.215-1994 Information Systems — Programming Language FORTH
ISO/IEC 15145:1997 Information technology. Programming languages. FORTH

3. Remove the “X3 Membership” and “X3J14 Membership” sections, as ISO did, when they
adopted the ANSI document.

4. Replace the “Forward” with the following:

Forth is a language for direct communication between human beings and machines.
Using natural-language diction and machine-oriented syntax, Forth provides an
economical, productive environment for interactive compilation and execution of
programs. Forth also provides low-level access to computer-controlled hardware,
and the ability to extend the language itself. This extensibility allows the language

to be quickly expanded and adapted to special needs and different hardware sys-
tems.
Forth was invented by Mr. Charles Moore to increase programmer productivity
without sacrificing machine efficiency. Forth is a layered environment containing
the elements of a computer language as well as those of an operating system
and a machine monitor. This extensible, layered environment provides for highly
interactive program development and testing.
In the interests of transportability of application software written in Forth, stan-
dardization efforts began in the mid-1970s by an international group of users and
implementors who adopted the name “Forth Standards Team”. This effort re-
sulted in the Forth-77 Standard. As the language continued to evolve, an interim
Forth-78 Standard was published by the Forth Standards Team. Following Forth
Standards Team meetings in 1979, the Forth-79 Standard was published in 1980.
Major changes were made by the Forth Standards Team in the Forth-83 Standard,
which was published in 1983.
In 1987, the ANSI (American National Standards Institute) and the IEEE (In-
stitute of Electrical and Electronics Engineers) convened the X3J14 committee
on Forth Programming Systems. The committee included many members of the
Forth Standards Team. After some twenty-three meetings (88 days) the commit-
tee published ANS X3.215-1994 Information Systems — Programming Languages
FORTH in 1994. This document was adopted as an international standard, by
the ISO, in 1997 and published as ISO/IEC 15145:1997 Information technology,
Programming languages, FORTH.
ANSI launched a review of the standard in 1999. A number of alterations where
proposed, however the committee eventually agreed to leave 1994 document un-
changed.
The current project to update the ANS Forth standard was launched at the 2004
EuroForth conference. Proposals to be posted and discussed via the comp.lang.forth
usenet news group and an email list (forth200x@yahoogroups.com. With an open
meetings to discuss proposals, held immediately before the annual EuroForth con-
ference.
This document is based on the final draft of the of the standard published by
Technical Committee on Forth Programming Systems as part of the 1999 review.
It has been modified in accordance with the directions of the Forth 200x Standards
Committee which first met on October 21–23, 2005.

5. Add a new “Proposals Process” section after the “Forward”:

In developing a standard it is necessary for the standards committee to know what
the system implementors and the programmers are already doing in that area, and
what they would be willing to do, or wish for.
To that end we have introduced a system of consultation with the Forth commu-
nity:

(a) A proponent of an extension or change to the standard write a proposal
(b) This proposal is published on comp.lang.forth usenet news group and on

the forth200x email list as an RfD (Request for Discussion) where the Forth
community can comment on the proposal.

(c) The proponent can modify the proposal, taking the comments into consider-
ation. Where they dismiss comments, the reasons for this dismissal must be
given. The revised proposal is republished as a new RfD.

(d) Once a proposal has settled down, it is republished as a CfV (Call for Votes).
System implementors state, whether their system implements the proposal,

or what the chances are that it ever will. Similarly, programmers can state
whether they have used something similar to the proposed extension and
whether they would used the proposed extension once it is standardized.

(e) After a deadline, a preliminary poll result will be published, but the poll will
remain open for adding to the Web page (especially system implementors are
invited to do that).

Note that should a contributor consider their comments to have been dismissed
without due consideration, they are encouraged to submit a counter proposal.
Proposals which have passed the poll will be integrated into the basis document
in preparation for the approaching Standards Committee meeting. No proposal
with a CfV deadline of less than three months prior to the next standards meeting
will be integrated into the basis document.
A proposal should contain the following

• Normative parts
This is the formal part of the proposal.
Proposal

The actual proposal should be as well-specified as possible.
Some issues could be left undecided, left for the discussion of the proposal.
These issues should be mentioned in the Remarks section in addition to
the proposal.
If you want to leave something open to the system implementor, make that
explicit, indicating it as implementation specific, or possibly by making it
an ambiguous condition.
For word definitions, take you example from the basis document. The
definition should include validation and rationale sections, as appropriate.

• Informative parts
The rest of the proposal is informative, giving a rationale for the proposal, so
that system implementors and programmers will see what it is good for and
why they should adopt it (and vote for it). This includes:
Problem

This states what problem the proposal addresses. It usually comes before
the (normative) proposal.

Typical use
Shows a typical use of the word/feature you propose; this should make
the formal wording easier to understand.

Remarks
This gives the rationale for specific decisions you have taken in the pro-
posal, or discusses specific issues that have not been decided yet.

Reference implementation
This makes it easier for system implementors to adopt your proposal.
Where possible a reference implementation should be provided in ANS
Forth. Where this is not possible, system specific knowledge is required
or non standard words are used, this should be documented.

Test cases
This should test the feature/words you propose, in particular, it should
test boundary conditions. Where possible test cases should be written to
the ANS Forth validation suite, as developed by John Hayes, and docu-
mented in appendix F of this document.

Experience
Indicate where the proposal has already been implemented and/or used.

Comments
Initially this is blank. As comments are made on the proposal, they should
be incorporated into the proposal. Comment which can not be incorpo-
rated should be included in this section. A response to the comment may
be included after the comment itself.

Instructions for voting
Once the proposal enters the Call for Votes stage, the vote-taker will add
the voting instructions to the proposal. The vote-taker will normally be a
member of the standards committee not directly involved in the drafting
of the proposal.

6. Add a new “Minutes of Meetings” section after the new “Proposals Process” section.

Note that as this is front-matter it will appear before the table of contents and thus the page
numbering of the main document will not be effected.

Minutes of the Forth200x Standards Committee #1
October 21–23, 2005, Santander, Spain
Participants
Willem Botha CCS, South Africa
Federico de Ceballos University of Cantabria, Spain
M. Anton Ertl Technische Universität Wien, Austria (Chair)
N. J. Nelson Micross, England (Observer)
Dr. Peter Knaggs University of Bournemouth, England
Stephen Pelc MPE, England
Dr. Bill Stoddart University of Teesside, England (Observer)

Action on proposals
Proposal Comments Status Action
X:deferred DEFER, DEFER@, DEFER!, IS, ACTION-OF Passed 5/0/0
X:defined [DEFINED] and [UNDEFINED] Passed 5/0/0
X:parse-name PARSE-NAME Passed 5/0/0
X:extension-query Modification to ENVIRONMENT?, revised to re-

move auto-loading of requested extensions
Passed 5/0/0

Other Business

(a) Integration into the standards document
Should new words be put into the established wordsets, or into new ones?
The eventual goal is to usually integrate the new words into existing wordsets
with related functionality; in some cases it may be more appropriate to create
a new word set. However, as an intermediate step the new proposals will at
first be kept separate, to make it easier for readers of the document to see
what is changing.

(b) How are the extension-query names reflected in the standard (if at all)?
The glossary header for new words includes the extension-query string for the
extension that proposed it. In addition, there will be a chapter or normative
appendix that lists all the extensions, their extension-query strings and the
components (word definitions etc.) that it consists of.

(c) Should the tests of a proposal or the reference implementation become nor-
mative?
No. This could lead to conflicting normative sections; also, making the refer-
ence implementation normative would lead to over specification.

(d) Review of the RfD/CfV process
How well is the RfD/CfV process working at generating high- quality proposals
for standardisation and getting information about their popularity? What
could be improved? Or should we do something completely different?

Many of the participants were not very familiar with how well the process
worked in practice, and had no suggestions for improvements.
The (normative part of the) proposals required adoption before integrating
them into the document, but there was a widespread feeling among the par-
ticipants that proposals in the form of unambiguous instructions to the doc-
ument editor (which is the form that would be voted on by the standards
committee) would be harder to understand for the CfV audience.
The resulting idea was to have two forms of the proposal, with the same
content: First the not-so-formal form used in the CfV, and later a form for
integrating it into the document.

(e) Official standards body
Should we run the standard through a standards body like ANSI, ISO, IEEE,
etc.? If so, which one?
Some participants consider the blessing of the future standards document by
an official standards body very important, and we agreed to work towards
this goal by writing the document in the appropriate style, and by keeping
documentation about all our steps. However, the general idea was to first
develop the document without involving a standards body, and deal with
them at the end.
Various candidate standards bodies were discussed; none was decided on, but
it might be that going through ANSI again might be the easiest route.

(f) Chairman and Editor M. Anton Ertl was appointed as the chair of the com-
mittee unopposed.
Dr. Peter Knaggs was appointed editor unopposed.

(g) Which standard documents should we start from?
Peter Knaggs has a version of dpANS99a in LATEX form, convertible into a
fully hyperlinked PDF file. However, it is yet unclear how this document
differs from the ANS/ISO Forth documents and dpANS6.

(h) Integration of CfV into the Standard
How do we get from the CfV proposal to the form for integration into the
document? One opinion was that the original proponent should do it.

(i) Proposal Champions
There was the opinion that a proposal (de-facto) needs a champion in the
committee to get approval by the standards committee. So, if the proponent
finds a champion in the committee, they could produce the for-the-document
version of the proposal together.

(j) Improvements for future standard meetings
• The participants should familiarise themselves with the proposals before-

hand.
• Paper printouts of the proposals should be available at the meeting.
• Proposals should be available in the form needed for integration into the

standards document in addition to the CfV form.
• There should be a champion for the proposal in the meeting.

Action Items

(a) Federico de Ceballos was asked to look into providing a proposal to cover the
following topics:
• number prefixes
• 0 for NIL
• ! and @ for 16-bit and 32-bit signed and unsigned integers, bytes, octets

(b) M. Anton Ertl was asked to look into the implications of the following and
develop proposals for them:

• separate FP stack
• required
• directory stuff in general
• directory handling for included and required
• key names forEKEY results

(c) Stephen Pelc was asked to look into the implication of the following topics,
and develop proposals for:
• { (locals), fp locals, buffer locals
• S\" .\"
• iors can be THROWn
• SYNONYM

• structures
(d) Bill Stoddart was asked to investigate the implications of allowing the parser

to ignore white space (TAB, CR, LF, and FF) in source code, and develop a
proposal.

(e) Peter Knaggs to contact John Hayes to obtain permission to include the val-
idation suite into the document and to produce a basis document based on
the ANS Forth standard with the four accepted proposals and validation suite
included.

Next Meeting
It was agreed that the next meeting would take place immediately before the next
euroForth conference to be held in Cambridge, England.

7. Replace the title on page 1:

American National Standard for Information Systems
Programming Language
Forth

with

Forth200x Standards Committee
Forth2006.2 Draft Standard

8. Replace the title on the title page:

Forth 200x

with

Forth 200x Draft

E.5 Remarks

Do we need a printed copy of the minutes from the standards meetings? My personal view is that
we do, so we can have independent documentation of the procedures we have undertaken in the
development of the standard.

As the most significant word in the previous paragraph is ”independent”, the question come as
to where the minutes should be published. I could published them in JFAR, but as the editor of
both Forth200x and JFAR, I would hardly call that ”independent”. Any other suggestions.

I have reformatted the minutes published on forth200x.org, in the same style as those of the X3J14
minutes published in JFAR.

F Floating Values

F.1 Author

Marcel Hendrix

F.2 Change History

2006-08-25 First draft.

F.3 Rationale

F.3.1 Problem

The word VALUE was considered useful enough to be included in Forth94. A search through 4827
source files shows 532 occurrences of VARIABLE versus 4241 uses of VALUE. It would be obviously
useful to have a variant of VALUE that works for floating-point values.

The main idea behind FVALUE is that fetching a variable is more frequent than changing it. There-
fore both readability of source code and efficiency of execution can be achieved by making ‘F@’ the
default action of FVALUE.

F.3.2 Current practice

The proposed form of FVALUE has been in use in tForth, iForth, and their predecessors since 1985.
FVALUE (with TO) is also in use for Mops and MacForth. The systems mentioned define more
TO-like words that work on values, e.g. +TO -TO CLEAR, with obvious meanings.

This proposal does not propose to standardize on these extensions.

F.3.3 Solution

Although many people have objected to parsing words, parsing permits the host system the most
flexibility in implementation and is thus the preferred solution (see also TO).

The syntax is:

123e0 FVALUE fdata

to define fdata as a floating-point value initialized to 123e0.

To access the value of fdata:

fdata 2e0 F+ F. <cr> 125.000000 ok

To change fdata:

fdata 2e0 F+ TO fdata fdata F. <cr> 125.000000 ok

F.4 Proposal

12.6.1.xxxx FVALUE “f-value” FLOATING

(F: x --) (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value equal to x. name is
referred to as an “f-value”.

name Execution: (F: -- x)

Place x on the FP stack. The value of x is that given when name was created, until the
phrase x TO name is executed, causing a new value of x to be associated with name.

See: 3.4.1 Parsing.

6.2.2295 TO CORE EXT

Interpretation: (x “〈spaces〉name” --) or (F: x --) (“〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Store x in name. An ambiguous
condition exists if name was not defined by VALUE or FVALUE.

Compilation: (“〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not defined
by VALUE or FVALUE.

Run-time: (x --) or (F: x --)

Store x in name.

Note: An ambiguous condition exists if either POSTPONE or [COMPILE] is applied to TO.

See: 6.2.2405 VALUE, 12.6.1.xxxx FVALUE, 13.6.1.2295 TO.

13.6.1.2295 TO LOCAL

Extend the semantics of 6.2.2295 TO to be:

Interpretation: (x “〈spaces〉name” --) or (F: x --) (“〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Store x in name. An ambiguous
condition exists if name was not defined by VALUE or FVALUE.

Compilation: (“〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not defined
by either VALUE, FVALUE or (LOCAL).

Run-time: (x --) or (F: x --)

Store x in name.

Note: An ambiguous condition exists if either POSTPONE or [COMPILE] is applied to TO.

See: 3.4.1 Parsing, 6.2.2295 TO, 6.2.2405 VALUE, 12.6.1.xxxx FVALUE, 13.6.1.0086 (LOCAL).

F.5 Labeling

TBD

F.6 Reference Implementation

The implementation of FVALUE requires carnal knowledge of the host implementation, which is
the main reason why it should be standardized.

The implementation below disregards the issue that TO should also work for integer VALUEs and
locals.

: FVALUE CREATE F, (F: r --) DOES> F@ ; (F: -- r)

: TO (F: r --) ("<spaces>name" --)
’ >BODY
STATE @ IF POSTPONE LITERAL POSTPONE F!

ELSE F!
THEN ; IMMEDIATE

F.7 Test Cases

123e FVALUE fdata
2 VALUE idata

: foo (--)
idata LOCALS| ldata |
ldata . idata 2* TO ldata ldata .
idata 1 D>F TO fdata fdata F.
fdata 33e F+ F>D D>S TO idata idata .
ldata idata + fdata F>D D>S + . ;

foo <cr> 2 4 4.294967e9 35 41 ok

G Enhanced local variable syntax

G.1 Author

Stephen Pelc

G.2 Change History

2006-08-22 Added explanatory text.
Corrected reference implementation.
Updated ambiguous conditions.

G.3 Problem

1. The current LOCALS| . . . | notation explicitly forces all locals to be initialised from the data
stack.

2. The current LOCALS| . . . | notation defines locals in reverse order to the normal stack
notation.

3. When programming large applications, especially those interfacing with a host operating
system, there is a frequent need for temporary buffers.

4. Current implementations show that creation and destruction of local buffers are much faster
than using ALLOCATE (14.6.1.0707) and FREE (14.6.1.1605).

G.4 Solution

G.4.1 Base version

The following syntax for local arguments and local variables is proposed. The sequence:

{ ni1 ni2 . . . | lv1 lv2 . . . -- o1 o2 }

defines local arguments, local variables, and outputs. The local arguments are automatically
initialised from the data stack on entry, the rightmost being taken from the top of the data
stack. Local arguments and local variables can be referenced by name within the word during
compilation. The output names are dummies to allow a complete stack comment to be generated.

The items between { and | are local arguments.
The items between | and -- are local variables or buffers.
The items between -- and } are outputs for formal comments only.

The outputs are provided in the notation so that complete stack comments can be produced.
However, all text between -- and } is ignored. The facility is there to permit the notation to form
a complete stack comment. This eases documentation and current users of the notation like this
facility.

Local arguments and variables return their values when referenced, and must be preceded by TO
to perform a store.

Local buffers may be defined in the form:

arr[〈expr〉]

Any name ending in the ‘[’ character will be treated as a buffer, the expression up to the termi-
nating ‘]’ will be interpreted to provide the size of the buffer. Local buffers only return their base
address, all operators such as TO generate an ambiguous condition.

In the example below, a and b are local arguments, a+b and a*b are local variables, and arr[is
a 10 byte local buffer.

: foo { a b | a+b a*b arr[10] -- }
a b + to a+b
a b * to a*b
cr a+b . a*b .
arr[10 erase
s" Hello" arr[swap cmove

;

G.4.2 Local types

Some current Forth systems use indicators to define local variables of sizes other than a cell. It is
proposed that any name ending in a ‘:’ (colon) be reserved for this use.

: foo { a b | F: f1 F: f2 -- c }
...

;

G.5 Discussion

The ‘|’ (ASCII 0x7C) character is widely used as the separator between local arguments and local
variables. Other characters accepted in current Forth implementations are ‘\’ (ASCII 0x5C) and
‘‖’ (ASCII 0xA6). Since the ANS standard is defined in terms of 7 bit ASCII, and with regard to
internationalistion, we propose only to consider the ‘|’ and ‘\’ characters further. Only recognition
of the ‘|’ separator is mandatory.

The use of local types is contentious as they only become useful if TO is available for these. In
practice, many current systems permit TO to be used with floats (children of FVALUE) and other
data types. Such systems often provide additional operators such as +TO (add from stack to item)
for children of VALUE and FVALUE. Standardisation of operators with (for example) floats needs to
be done before the local types extension can be incorporated into Forth200x. Apart from forcing
allocation of buffer space, no additional functionality is provided by local types that cannot be
obtained using local buffers. More preparatory standardisation needs to be done before local types.

Apart from { (brace) itself, the proposal introduces one new word BUILDLV. The definition of this
word is designed for future enhancements, e.g. more local data types, without having to introduce
more new words.

G.6 Proposal

13.3 and 13.4
Add “and BUILDLV” where (LOCAL) is referenced.

13.6.2.xxxx { “brace” LOCAL EXT

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉arg1” . . . “〈spaces〉argn” | “〈spaces〉lv1” . . . “〈spaces〉lvn” --)

Create up to eight local arguments by repeatedly skipping leading spaces, parsing arg, and
executing 13.6.2.yyyy BUILDLV. The list of local arguments to be defined is terminated by
“|”, “--” or “}”. Append the run-time semantics for local arguments given below to the
current definition. If a space delimited ‘|’ is encountered, create up to eight local variables
or buffers by repeatedly skipping leading spaces, parsing lv, and executing 13.6.2.yyyy
BUILDLV. The list of local variables and buffers to be defined is terminated by “--” or “}”.
Append the run-time semantics for local variables and local buffers given below to the current
definition. If “--” has been encountered, further text between “--” and } is ignored.

Local buffers have names that end in the ‘[’ character. They define their size by parsing the
text string up to the next ‘]’ character, and passing that string to 7.6.1.1360 EVALUATE to
obtain the size of the storage in address units.

Local argument run-time: (x1 . . . xn --)

Local variable run-time: (--)

Local buffer run-time: (--)

Initialize up to eight local arguments as described in 13.6.2.yyyy BUILDLV. Local argument
arg1 is initialized with x1, arg2 with x2 up to argn from xn, which is on the top of the
data stack. When invoked, each local argument will return its value. The value of a local
argument may be changed using 13.6.1.2295 TO.

Initialize up to eight local variables or local buffers as described in 13.6.2.yyyy BUILDLV. The
initial contents of local variables and local buffers are undefined. When invoked, each local
variable returns its value. The value of a local variable may be changed using 13.6.1.2295
TO. The size of a local variable is a cell. When invoked, each local buffer will return its
address. The user may make no assumption about the order and contiguity of local variables
and buffers in memory.

Ambiguous conditions:

1. The { . . . } text extends over more than one line.

2. The expression for local buffer size does not return a single cell.

3. { . . . } is declared more than once in a word.

4. Parsing units ‘|’, ‘]’, ‘--’ and ‘}’ are not white-space delimited.

13.6.2.yyyy BUILDLV “build-l-v” LOCAL EXT

Interpretation: Interpretation semantics for this word are undefined.

Execution: (c − addr u +n mode --)

When executed during compilation, BUILDLV passes a message to the system identifying a
new local argument whose definition name is given by the string of characters identified by
c − addr u. The size of the data item is given by +n address units, and the mode identifies
the construction required as follows:

0 finish construction of initialisation and data storage allocation code. C − addr and u are
ignored. +n is 0 (other values are reserved for future use).

1 identify a local argument, +n = cell

2 identify a local variable, +n = cell

3 identify a local buffer, +n = storage required.

4+ reserved for future use

-ve implementation specific values

The result of executing BUILDLV during compilation of a definition is to create a set of named
local arguments, variables and/or buffers, each of which is a definition name, that only have
execution semantics within the scope of that definition’s source.

local argument execution: (-- x)

Push the local argument’s value, x, onto the stack. The local argument’s value is initialized
as described in 13.6.2.xxxx { and may be changed by preceding the local argument’s name
with TO.

local variable execution: (-- x)

Push the local variables’ value, x, onto the stack. The local variable is not initialised. The
local variable’s value may be changed by preceding the local variable’s name with TO.

local buffer execution: (-- a − addr)

Push the local buffer’s address, a−addr, onto the stack. The address is aligned as in 3.3.3.1.
The contents of the buffer are not initialised.

Note: This word does not have special compilation semantics in the usual sense because it provides
access to a system capability for use by other user-defined words that do have them. However,
the locals facility as a whole and the sequence of messages passed defines specific usage rules
with semantic implications that are described in detail in section 13.3.3 Processing locals.

Note: This word is not intended for direct use in a definition to declare that definition’s locals.
It is instead used by system or user compiling words. These compiling words in turn define
their own syntax, and may be used directly in definitions to declare locals. In this context,
the syntax for BUILDLV is defined in terms of a sequence of compile-time messages and is
described in detail in section 13.3.3 Processing locals.

Note: The LOCAL EXT word set modifies the syntax and semantics of 6.2.2295 TO as defined
in the CORE EXT word set.

See: 3.4 The Forth text interpreter

Ambiguous conditions:
A local argument, variable or buffer is executed while in interpretation state.

G.7 Reference implementation

(currently untested)

: TOKEN \ -- caddr u
\ Get the next space delimited token from the input stream.
BL PARSE

;

: LTERM? \ caddr u -- flag
\ Return true if the string caddr/u is "--" or "}"
2DUP S" --" COMPARE 0= >R
S" }" COMPARE 0= R> OR

;

: LBSIZE \ -- +n
\ Parse up to the terminating ’]’ and EVALUATE the expression
\ not including the terminating ’]’.
[CHAR]] PARSE EVALUATE

;

: LB? \ caddr u -- flag
\ Return true if the last character of the string is ’[’.
+ 1 CHARS - C@ [CHAR] [=

;

: LSEP? \ caddr u -- flag
\ Return true if the string caddr/u is the separator between
\ local arguments and local variables or buffers.
2DUP S" |" COMPARE 0= >R
S" \" COMPARE 0= R> OR

;

: { (--)
0 >R \ indicate arguments
BEGIN
TOKEN 2DUP LTERM? 0=

WHILE \ -- caddr len
2DUP LSEP? IF \ if ’|’
R> DROP 1 >R \ change to vars and buffers

ELSE
R@ 0= IF \ argument?

CELL 1
ELSE \ variable or buffer
LB?
IF LBSIZE 3 ELSE CELL 2 THEN

THEN
BUILDLV

THEN
REPEAT
BEGIN
S" }" COMPARE
WHILE
TOKEN

REPEAT
0 0 0 0 BUILDLV
R> DROP

; IMMEDIATE

H Represent

H.1 Author

Ed (edsa@alphalink.com.au)

H.2 Change History

2005-10-09 Clarify number of characters at c − addr when flag2 is false.
REPRESENT code cleaned-up.
Addendum added.

2005-09-02 First release

H.3 Background

Forth-94 has few floating point display functions [none in the Floating-Point wordset, three in the
Extension wordset]. To allow users to create their own output functions the Standard provides
the float-to-string primitive REPRESENT.

Though intended to be portable, REPRESENT’s loose definition has given rise to implementations
that differ in critical respects. It is also lacks adequate functionality to implement fixed-point
notation display.

These deficiencies create significant obstacles for programmers attempting to write portable appli-
cations based on REPRESENT. While “work-arounds” may be used to minimize the problems, they
tend to be complex and cumbersome (ref. 2).

It is perhaps inevitable that REPRESENT will need revision in the future. To that end, I wish to
propose the following redefinition. It addresses all the key issues while remaining compatible with
the Forth-94 specification. As the changes largely reflect common practice, compatibility with
existing applications is unlikely to be affected.

H.4 Proposal

Replace the existing definition of REPRESENT with the following:

12.6.1.2143 REPRESENT FLOATING

(c − addr u -- n flag1 flag2) (F: r --) or (r c − addr u -- n flag1 flag2)

At c − addr, place the character-string external representation of the significand of the
floating-point number r. Return the decimal-base exponent as n, the sign as flag1 and
“valid result” as flag2.

If u is greater than zero the character string shall consist of the u most significant digits of
the significand represented as a decimal fraction with the implied decimal point to the left
of the first digit, and the first digit zero only if all digits are zero. The significand is rounded
to u digits.

If u is zero the string shall consist of one digit representing the fractional significand r
rounded to a whole number, either one or zero, with an implied decimal point to the left of
the digit.

Rounding follows the “round to nearest” rule; n is adjusted, if necessary, to correspond to
the rounded magnitude of the significand. If r is zero or evaluates to zero after rounding,
then n is 1 and the sign is implementation-defined.

If flag2 is true then r was in the implementation-defined range of floating-point numbers.
If flag1 is true then r is negative.

An ambiguous condition exists if the value of BASE is not decimal ten.

When flag2 is false, n and flag1 are implementation-defined, as are the contents of c−addr.
The string at c − addr shall consist of graphic characters left-justified with any unused
positions to the right filled with space characters. The number of characters is one if u is
zero, or u characters otherwise.

See: 3.2.1.2 Digit Conversion, 6.1.0750 BASE, 12.3.2 Floating-point operations.

H.5 Rationale

1. Floating point zero issues

(a) Exponent value Forth-94 does not explicitly indicate the exponent value (n) that should
be returned in the case of floating-point zero.
Mathematically any value would do since zero raised to any power remains zero. This
has led to portability issues with various implementations returning n = 0, 1 or other
value.
From a number display perspective however, the exponent value is important since it
determines where the decimal point shall be shown.
The new specification requires REPRESENT to return n = 1. This corresponds to the
common convention that zero has an implied decimal point to the right of the digit i.e.
“0.”
[C library function ecvt similarly returns 1 for the exponent value — presumably for
the same reasons.]

(b) Negative zero
Certain floating point representations such as IEEE-754 allow “negative zero”. While
Forth-94 is silent regarding “negative zero” there appears to be nothing that would
prevent its use. See Implementation
Note: Forths that choose to implement negative zero should do so consistently. Not
only must REPRESENT return the appropriate sign, so also should >FLOAT FROUND F.
FS. FE.

2. Out of range numbers

Forth-94 states that when flag2 = false, the number is not within the defined range and a
user-defined string shall be returned in the buffer.

(a) String contents
“the string at c − addr shall consist of graphic characters”
Nothing is stated regarding the string’s length, alignment or padding. Most forths
adopt the following practice

• The length of the returned string is the same as when flag2 = true i.e. the length
is determined by u.

• Characters are positioned left-justified within the buffer with any unused positions
to the right filled with space characters. A users may subsequently trim off the
padding spaces with -TRAILING e.g.

(r) PAD u REPRESENT ... PAD u -TRAILING (c-addr u2)

(b) Value of n and flag1

“n and flag1 are implementation defined”

Some forths have REPRESENT return a basic string (‘NAN’, ‘INF’ etc) and then use
flag1 to later indicate the sign. While such practices are permitted under Forth-94,
they are not portable.
Portable applicationa can only make use of the returned string. If a sign needs to be
passed to an application then it must be included in the string e.g. ‘+NAN’ ‘-INF’

(c) String length
A difficulty with the present system is that the returned string becomes increasingly
truncated as u decreases. At one or two characters most strings are unintelligible.
The situation could be alleviated somewhat by requiring REPRESENT to return a min-
imum string of [say] five characters. This would give a programmer greater scope in
handling “not a number” situations since a usable string would always be available e.g.

(r) PAD u REPRESENT 0= IF PAD u 5 MAX ... THEN

Such a requirement could, however, break existing code and therefore has NOT been
included in the new specification. It is mentioned here only for purposes of opening up
discussion on the topic.

3. Rounding

Applications often require floating point numbers to be displayed rounded to a lesser precision
than the internal maximum allows.

In Forth-94 this rounding is performed through REPRESENT with parameter u controlling the
amount of rounding e.g.

(r) PAD u REPRESENT 2DROP PAD u TYPE SPACE .
r u string n (exponent)

0.6489 4 ‘6489’ 0
0.6489 3 ‘649’ 0
0.6489 2 ‘65’ 0
0.6489 1 ‘6’ 0

But what if we need to display 0.6489 rounded to 0 decimal places? This would require
fraction .6489 be rounded to the nearest whole number i.e. 1.

Such situations arise when displaying fixed-point notation to a given number of decimal
places. Failure to round the entire significand when appropriate leads to incorrect results.
Here are some examples.

Display 0.009 to 2 decimal places in a field width of 5 characters:

0.009E 2 5 F.R 0.00 ok (FPOUT 1.6 and prior)
0.009E 5 2 0 F.RDP 0.00 ok (Gforth 0.6.2)

(The result should have been 0.01)

REPRESENT currently has no provision for such rounding and it is a serious omission.

Luckily we can add the missing functionality by simply allowing u to take the value zero e.g.

(r) PAD u REPRESENT 2DROP PAD u 1 MAX TYPE SPACE .
r u string n (exponent)

0.6489 4 ‘6489’ 0
0.6489 3 ‘649’ 0
0.6489 2 ‘65’ 0
0.6489 1 ‘6’ 0
0.6489 0 ‘1’ 1

As the above table shows we are merely extending REPRESENT in a logical direction. This
makes it easy to implement and use.

H.6 Usage

Existing applications using REPRESENT may be left alone and they will continue to function as
before.

Applications that will benefit from REPRESENT’s new rounding facility are those in which parameter
u takes the value zero.

Previously such applications needed 1 MAX inserted before REPRESENT to mask the fact that it
could not handle u = 0 e.g.

c-addr u ... 1 MAX REPRESENT ... c-addr u ...

Making these applications work correctly will require the following code re-arrangement in addition
to the replacement REPRESENT.

c-addr u ... REPRESENT ... c-addr u 1 MAX ...

By way of demonstration, let’s apply these principles to our earlier Gforth example.

Step 1 Load a version of REPRESENT that is compliant with the new specification (the sample
one given below will do).

Step 2 Edit the source for F.RDP (located in Gforth 0.6.2 distribution file “stuff.fs”). Change
line 211 from “1 max ur min” to “0 max ur min” and then re-load.

Step 3 Trying our previous example:

0.009E 5 2 0 F.RDP 0.01 ok

It now functions correctly.

H.7 Implementation

Implementing the new specification should not be difficult. A sample REPRESENT which includes
all the critical features is given below.

Tips:

• Forth implementations that have “negative zero”, and wish to display it, should ensure
REPRESENT returns the appropriate sign even when rounding produces a result of zero e.g.

-0.4E PAD 0 REPRESENT PAD 1 TYPE DROP SPACE . 0 -1 ok
0.4E PAD 0 REPRESENT PAD 1 TYPE DROP SPACE . 0 0 ok

• “Forths written in C” may be able to implement REPRESENT using library functions fcvt
and ecvt.

A sample REPRESENT:

\ Assumes flag2 is always true and MPREC digits can be held
\ as a double number. "Negative zero" is not implemented.

7 VALUE MPREC \ your maximum precision
2VARIABLE EXP \ exponent & sign

: REPRESENT (c-addr u -- n flag1 flag2) (F: r --)
2DUP [CHAR] 0 FILL
MPREC MIN 2>R
FDUP F0< 0 EXP 2!
FABS FDUP F0= 0=
BEGIN WHILE
FDUP 1.0E F< 0= IF
10.0E F/
1

ELSE
FDUP 0.1E F< IF
10.0E F*
-1

ELSE
0

THEN
THEN
DUP EXP +!

REPEAT
1.0E R@ 0 ?DO 10.0E F* LOOP F*
FROUND F>D
2DUP <# #S #> DUP R@ - EXP +!
2R> ROT MIN 1 MAX CMOVE
D0= EXP 2@ SWAP ROT IF 2DROP 1 0 THEN \ 0.0E fix-up
TRUE ;

H.8 Summary

A portable and functional REPRESENT reduces the burden on the programmer. It eliminates the
need for work-arounds, simplifies application code and hides system-specific detail such as negative
zero and rounding method.

As author of the FPOUT package, it is perhaps fitting to finish off with a demonstration of what the
code would have been had the REPRESENT proposed here been available. In the following the first
version shows original subroutine (F1) with work-arounds to make it portable; while the second
version shows (F1) as it would be using the proposed REPRESENT.

1. Original subroutine (F1) with portability “work-arounds”

0 VALUE NZ# (initialized to true if REPRESENT responds
to "negative zero"; or false otherwise)

\ float to ascii
: (F1) (F: r --) (places -- c-addr u flag)
TO PL# PRECISION TO BS#
FDUP FBUF BS# REPRESENT SWAP (r exp flag2 sgn)
\ save sign for negative zero systems
[NZ#] [IF] TO NZ# [ELSE] DROP [THEN]
FBUF C@ [CHAR] 0 = IF (r=0)
>R DROP FDROP 1 NZ# R> (exp sgn flag2)

ELSE
AND (exp & flag2) PL# 0< IF
DROP PRECISION

ELSE
EF# 0> IF 1- (F0) DROP 1+ THEN PL# +

THEN
DUP (size) 0= >R 1 MAX PRECISION MIN TO BS#
FBUF R@ IF PRECISION ELSE BS# THEN REPRESENT
DUP R> AND IF (flag2 & size=0)
>R FBUF C@ DUP [CHAR] 5 =
FBUF PRECISION 1 /STRING (T0) NIP 0= AND
SWAP [CHAR] 5 < OR
IF 2DROP 1 NZ# [CHAR] 0
ELSE SWAP 1+ SWAP [CHAR] 1
THEN FBUF C! R>

THEN
THEN
>R TO SN# 1- TO EX# FBUF BS# -TRAILING R> <# ;

2. Replacement subroutine (F1) using the new REPRESENT

\ float to ascii
: (F1) (F: r --) (places -- c-addr u flag)
TO PL# FDUP FBUF PRECISION REPRESENT NIP AND
PL# 0< IF
DROP PRECISION

ELSE
EF# 0> IF 1- (F0) DROP 1+ THEN PL# +

THEN 0 MAX PRECISION MIN TO BS#
FBUF BS# REPRESENT >R TO SN# 1- TO EX#
FBUF BS# 1 MAX -TRAILING R> <# ;

H.9 References

1. ANS Forth-94 Standard

2. FPOUT — a floating point output package8

H.10 Addendum

1. If only one float-to-string primitive is needed then why do certain C language libraries provide
several?

A good question and one that should be asked of the library designers! As applications such
as FPOUT demonstrate it is not only easy to reproduce the functionality of ecvt fcvt gcvt
etc with but a single primitive, it is more efficient to do so.

2. Rather than change REPRESENT isn’t it better to leave it alone and introduce another function
like fcvt which has the necessary rounding required for fixed-point notation?

This is a restatement of the previous question in a different form. Reflection will reveal
that in order to implement fcvt it would require, at minimum, all the functionality of the
proposed REPRESENT. In other words, fcvt is not a primitive at all but rather an application
built upon an underlying primitive.

8ftp.taygeta.com/pub/Forth/Applications/ANS/fpout18.f

3. “c−addr u” is a buffer address and length. The proposal has u = 0 write a character beyond
the end of the buffer.

The premise that “c − addr u” represents a buffer and length into which REPRESENT writes
is incorrect. ANS defines c−addr as the buffer address where the character string is placed,
and u as the number of “most significant digits” that shall be represented by the string. It
was always the programmer’s responsibility to ensure that adequate space was allocated to
the buffer beforehand.

4. If u represents the number of significant digits then surely u = 0 means that no characters
or a null string should result?

This assumes that u is a length — which it is not. The usual result of rounding a number to
n significant digits is another number which can be subsequently represented as an ASCII
string. Before one can assert a null string should result, one would need to demonstrate there
exists a number which it represents and that this number is the valid result of rounding to
zero significant digits.

5. Most forths currently have REPRESENT return a null string when u = 0. Even though such
behaviour may be technically in doubt, won’t changing it affect existing applications?

No. It should be remembered that it is the application and not REPRESENT that determines
how many characters will be extracted from the buffer. So, if an application [mistakenly]
chooses to extract u characters when u = 0 then the result will be the same irrespective
of which REPRESENT was used. Having said that, I am unaware of any applications which
actually use the null string.

6. If the ANS requirements at u = 0 are undefined then what makes you so certain the rounding
behaviour you’re advocating should be the adopted one?

Put simply, it produces the right outcome in applications on every occasion without con-
trivance or work-arounds. The proposed rounding turns REPRESENT into a true universal
primitive — one that can be used to build any float-to-string function.

I Structures

I.1 Author

Stephen Pelc

I.2 Change History

2006-08-30 Removed some restrictions on FIELD: and children.
Moved some words to FLOATING EXT.

2006-08-27 Added alignment to discussion.

2006-08-22 Rewrite after criticism

2006-08-21 First draft

I.3 Rationale

I.3.1 Problem

Virtually all serious Forth systems provide a means of defining data structures. The notation is
different for nearly all of them.

I.3.2 Current practice

Current practice is too varied to merge or agree on one word set, either of names or of stack effects.
In particular there are two camps, one which defines the name of the structure at the start, and
one which defines it at the end. Examples are:

STRUCT POINT \ -- len
1 CELLS FIELD: P.X
1 CELLS FIELD: P.Y
END-STRUCT

STRUCT{
1 CELLS FIELD: P.X
1 CELLS FIELD: P.Y
}STRUCT POINT \ -- len

I.3.3 Discussion

The name first implementation of STRUCT and END-STRUCT is not difficult.

: STRUCT \ -- addr 0 ; -- size
CREATE HERE 0 0 , DOES> @ ;

: END-STRUCT \ addr n --
SWAP ! ; \ set size

: FIELD: \ n1 n2 "name" -- n3 ; addr -- addr+n1
CREATE OVER , + DOES> @ + ;

The name last implementations of STRUCT{ and }STRUCT are trivial even for native code compilers:

: STRUCT{ \ -- 0
0 ;

: }STRUCT \ size "name" --
CONSTANT ;

: FIELD: \ n1 n2 "name" -- n3 ; addr -- addr+n1
CREATE OVER , + DOES> @ + ;

In both cases the definition of FIELD: is the same. Further words that operate on types can all
use FIELD: and so can be common to both camps.

For many modern compilers, implementing FIELD: to provide efficient execution requires carnal
knowledge of the system.

Compatibility between the name first and name last camps is by defining the stack item struct-
sys, which is implementation dependent and can be 0 or more cells. In the name-first example
above, struct-sys corresponds to the ”addr” stack items in the stack comments of STRUCT and
END-STRUCT above. After some discussion on newsgroups and mailing lists, the consensus is that
struct-sys should not appear in the specification of FIELD:.

Mitch Bradley wrote the following about structure alignment:

In practice, structures are used for two different purposes with incompatible require-
ments:

1. For collecting related internal-use data into a convenient “package” that can be
referred to by a single “handle”. For this use, alignment is important, so that
efficient native fetch and store instructions can be used.

2. For mapping external data structures like hardware register maps and protocol
packets. For this use, automatic alignment is inappropriate, because the align-
ment of the external data structure often doesn’t match the rules for a given
processor.

C caters to requirement (1) but essentially ignores (2). Yet people use C structures
for external data structures all the time, leading to various custom macro sets, usage
requirements, portability problems, bugs, etc.

Since I do much more (2) than (1), I prefer a structure definition basis that is funda-
mentally unaligned. It is much easier to add alignment than to undo it.

I.3.4 Solution

The intention of this proposal is to find a portable notation for defining data structures using word
names that do not conflict with existing systems, and to provide easy portability of code between
systems.

System implementors can then define these words in terms of their existing structure definition
words to enhance performance.

Authors of portable code will have a common point of reference.

The approach is to define FIELD: so as to enable both camps to co-exist. Since the name last
approach is the simplest and only requires synonyms to define the start and end words, we simply
recommend that these users write portable code in the form:

0
a FIELD: b
c FIELD: d
CONSTANT somestruct

We now turn to considering name first implementations, with the objective of providing a simple
means of porting to name last implementations. Using the usual point and rectangle example, we
can define structures:

BEGIN-STRUCTURE point \ -- a-addr 0 ; -- lenp
1 CELLS FIELD: p.x \ -- a-addr cell
1 CELLS FIELD: p.y \ -- a-addr cell*2
END-STRUCTURE

BEGIN-STRUCTURE rect \ -- a-addr 0 ; -- lenr
point FIELD: r.tlhc \ -- a-addr cell*2
point FIELD: r.brhc \ -- a-addr cell*4
END-STRUCTURE

The proposal text below does not require FIELD: to align any item. This is deliberate, and allows
the construction of groups of bytes. Because the current size of the structure is available on the
top of the stack, words such as ALIGNED (6.1.0706) can be used.

Although this is a sufficient set, most systems provide facilities to define field defining words for
standard data types. Note that these also satisfy the alignment requirements of the host system,
whereas FIELD: does not.

The recommended field type definers are:

CFIELD: 1 character
IFIELD: native integer (single cell)
FFIELD: native float
SFFIELD: 32 bit float
DFFIELD: 64 bit float

The following cannot be done until the required addressing has been defined. The names should
be considered reserved until then.

BFIELD: 1 byte (8 bit) field.
WFIELD: 16 bit
LFIELD: 32 bit field
XFIELD: 64 bit field

Name first minimalists are reminded that it is adequate to provide the source code (even by
reference) in this proposal.

I.4 Proposal

10.6.2.aaaa FIELD: “field-colon” FACILITY EXT

(n1 n2 “〈spaces〉name” -- n3)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below. Return n3 = n1 + n2 where n1 is the offset in
the data structure before FIELD: executes, and n2 is the size of the data to be added to the
data structure. n1 and n2 are in address units.

name Exection:
(addr -- addr + n1)

Add n1 from the execution of FIELD: above to addr.

10.6.2.cccc BEGIN-STRUCTURE “struct” FACILITY EXT

(“〈spaces〉name” -- struct − sys 0)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Return a struct − sys (zero or more
implementation dependent items) that will be used by END-STRUCTURE (10.6.2.dddd) and
an initial offset of 0.

name Execution: (-- +n)

+n is the size in memory expressed in address units of the data structure.

Ambiguous conditions: If name is executed before the closing END-STRUCTURE has been exe-
cuted.

10.6.2.dddd END-STRUCTURE “end-structure” FACILITY EXT

(struct − sys +n --)

Terminate definition of a structure started by BEGIN-STRUCTURE (10.6.2.cccc).

10.6.2.eeee CFIELD: “c-field-colon” FACILITY EXT

The semantics of CFIELD: are identical to the execution semantics of the phrase
1 CHARS FIELD:

10.6.2.ffff IFIELD: “i-field-colon” FACILITY EXT

The semantics of IFIELD: are identical to the execution semantics of the phrase
ALIGNED 1 CELLS FIELD:

12.6.2.gggg FFIELD: “f-field-colon” FLOATING EXT

The semantics of FFIELD: are identical to the execution semantics of the phrase
FALIGNED 1 FLOATS FIELD:

12.6.2.hhhh SFFIELD: “s-f-field-colon” FLOATING EXT

The semantics of SFFIELD: are identical to the execution semantics of the phrase
SFALIGNED 1 SFLOATS FIELD:

12.6.2.iiii DFFIELD: “d-f-field-colon” FLOATING EXT

The semantics of DFFIELD: are identical to the execution semantics of the phrase
DFALIGNED 1 DFLOATS FIELD:

I.5 Labelling

• ENVIRONMENT? impact — table 3.5 in Basis1
name stack condition

• THROW/ior impact — table 9.2 in Basis1
value text

I.6 Reference Implementation

Modified three times from original code in VFX Forth for Windows.

: begin-structure \ -- addr 0 ; -- size
\ *G Begin definition of a new structure. Use in the form
\ ** *\fo{BEGIN-STRUCTURE <name>}. At run time *\fo{<name>}
\ ** returns the size of the structure.
create
here 0 0 , \ mark stack, lay dummy
does> @ ; \ -- rec-len

: end-structure \ addr n --
\ *G Terminate definition of a structure.
swap ! ; \ set len

: field: \ n <"name"> -- ; Exec: addr -- ’addr
\ *G Create a new field within a structure definition of size n
bytes.
create
over , +
does>
@ +
;

: cfield: \ n1 <"name"> -- n2 ; Exec: addr -- ’addr
\ *G Create a new field within a structure definition of size 1
CHARS.
1 chars field:
;

: ifield: \ n1 <"name"> -- n2 ; Exec: addr -- ’addr
\ *G Create a new field within a structure definition of size 1
CELLS.
\ ** The field is ALIGNED.
aligned 1 cells field:
;

: ffield: \ n1 <"name"> -- n2 ; Exec: addr -- ’addr
\ *G Create a new field within a structure definition of size 1
FLOATS.
\ ** The field is FALIGNED.
faligned 1 floats field:
;

: sffield: \ n1 <"name"> -- n2 ; Exec: addr -- ’addr
\ *G Create a new field within a structure definition of size 1
SFLOATS.
\ ** The field is SFALIGNED.
sfaligned 1 sfloats field:
;

: dffield: \ n1 <"name"> -- n2 ; Exec: addr -- ’addr
\ *G Create a new field within a structure definition of size 1

DFLOATS.
\ ** The field is DFALIGNED.
dfaligned 1 dfloats field:
;

I.7 Test Cases

TBD.

J Synonyms

J.1 Author

Stephen Pelc

J.2 Change History

2006-09-22 Enhanced current practice section.
Fixed some typos.

2006-08-21 First draft.

J.3 Rationale

J.3.1 Problem

Various words have been used to generate a new name for an existing word. This required when
porting code and when generating application wordlists that contain a reference to an existing
word, e.g. when providing limited access to Forth system kernel words.

Especially with native code compiling Forth systems and cross compilers, these words have not
provided full access to the required behaviour. The behaviour may require carnal knowledge of
the underlying system, which is one reason why SYNONYM should be standardised.

J.3.2 Current practice

The proposed form SYNONYM has been in use at MPE with cross compilers and VFX Forth since
1998. It is also implemented in Win32Forth and PFE.

Many people have suggested that we stay with words such as AKA, ALIAS or ALIAS:, usually of
the form

’ 〈oldname〉 ALIAS 〈newname〉

This has merit in terms of common practice, but will break code for several systems. Some
systems, e.g. cross compilers, cannot generate enough information using the xt of a word alone.
All surveyed systems can implement SYNONYM.

J.3.3 Solution

Although many people have objected to parsing words, parsing permits the host system the most
flexibility in implementation and is thus the preferred solution.

The syntax is:

SYNONYM 〈newname〉 〈oldname〉

where 〈newname〉 will behave identically to 〈oldname〉.
Note that 〈newname〉 may be the same as 〈oldname〉.

J.4 Proposal

10.6.2.xxxx SYNONYM FACILITY EXT

(“〈spaces〉newname” “〈spaces〉oldname” --)

For both strings skip leading space delimiters. Parse newname and oldname delimited by a
space. The definition for newname with the semantics defined below. newname may be the
same as oldname.

newname interpretation: (i ∗ x -- j ∗ x)

Perform the interpretation semantics of oldname.

newname compilation: (i ∗ x -- j ∗ x)

Perform the compilation semantics of oldname.

Ambiguous conditions:

• The word newname is parsed by ’ or [’] or POSTPONE.

• oldname is not found.

• IMMEDIATE is used for a word defined by SYNONYM.

J.5 Labelling

TBD

J.6 Reference Implementation

The implementation of SYNONYM requires carnal knowledge of the host implementation, which is
one reason why it should be standardised. The implementation below is imperfect and specific to
VFX Forth.

: Synonym \ <"new-name"> <"curdef"> --
\ *G Create a new definition which redirects to an existing one.
create immediate
hide ’ , reveal

does>
@ state @ 0= over immediate? or
if execute else compile, then

;

J.7 Test Cases

TBD

K THROW codes and IORs

K.1 Author

Stephen Pelc

K.2 Change History

2006-08-21 First draft.

K.3 Rationale

K.3.1 Problem

Error codes returned by some words, e.g. ALLOCATE are not specified, and an application has no
entitlement to use them as THROW codes. The leads to very clumsy code of the form:

ALLOCATE IF <lit> THROW ENDIF

or

: ?THROW \ ior throwcode --
SWAP IF THROW ELSE DROP THEN ;

ALLOCATE <lit> ?THROW

However, we also see many instances of code such as

ALLOCATE THROW

which leads to silent aborts when a system issues -1 THROW (as it is currently entitled to) or
incorrect error messages.

K.3.2 Current practice

As far as possible within historical and commercial constarints, MPE has attempted to make iors
THROWable. The only downside has been some necessary conversion of operating system error codes
to ANS or application error codes.

Some years ago, some people objected to making iors the same as THROW codes because of the
documentation overhead. This proposal is made to sample opinion again, particularly among
Forth system implementers.

K.3.3 Solution

All words which return an ior should have one value assigned in the THROW code table (Table 9.2
in 9.3.5). This table reserves values −1..−255 for system-defined exceptions. Systems that ignore
this proposal are unaffected if they already avoid these values, and systems that implement this
proposal gain use of these new fixed iors.

The only downside is that we have to define some new THROW codes.

K.4 Proposal

Extend the THROW code table (Table 9.2 in 9.3.5) so that there is a separate THROW code for each
word that returns an ior.

K.5 Labelling

• ENVIRONMENT? impact — table 3.5 in Basis1
name stack conditions

• THROW/ior impact — table 9.2 in Basis1
value text

-1 CLOSE-FILE
-2 CREATE-FILE
-3 DELETE-FILE
-4 FILE-POSITION
-5 FILE-SIZE
-6 OPEN-FILE
-7 READ-FILE
-8 READ-LINE
-9 REPOSITION-FILE

-10 RESIZE-FILE
-11 WRITE-FILE
-12 WRITE-LINE
-13 FILE-STATUS
-14 FLUSH-FILE
-15 RENAME-FILE
-16 ALLOCATE
-17 FREE
-18 RESIZE

L Extended character wordset (for UTF-8 and alike)

L.1 Author

Bernd Paysan

L.2 Change History

2005-09-25 First draft.

L.3 Problem

ASCII is only appropriate for the English language. Most western languages however fit somewhat
into the Forth frame, since a byte is sufficient to encode the few special characters in each (though
not always the same encoding can be used; latin-1 is most widely used, though). For other
languages, different char-sets have to be used, several of them variable-width. Most prominent
representant is UTF-8. Let’s call these extended characters XCHARs. Since ANS Forth specifies
ASCII encoding, only ASCII-compatible encodings may be used.

L.4 Proposal

L.4.1 Datatypes:

xc is an extended character on the stack. It occupies one cell, and is a subset of unsigned cell.
Note: UTF-8 can not store more that 31 bits; on 16 bit systems, only the UCS16 subset of
the UTF-8 character set can be used.

xc-addr is the address of an extended character in memory. Alignment requirements are the
same as c-addr. The memory representation of an extended character differs from the stack
location, and depends on the encoding used. An extended character may use a variable
number of address units in memory.

L.4.2 Common encodings:

Input and files commonly are either encoded iso-latin-1 or utf-8. The encoding depends on settings
of the computer system such as the LANG environment variable on Unix. You can use the system
consistently only when you don’t change the encoding, or only use the ASCII subset.

L.4.3 Words:

XC-SIZE “??” XCHAR

(xc -- u)

Computes the memory size of the extended character xc in address units.

XC@+ “??” XCHAR

(xc-addr1 -- xc-addr2 xc)

Fetchs the extended character xc at xc-addr1. xc-addr2 points to the first memory
location after xc.

XC!+ “??” XCHAR

(xc xc-addr1 -- xc-addr2)

Stores the extended character xc at xc-addr1. xc-addr2 points to the first memory
location after xc.

XCHAR+ “??” XCHAR

(xc-addr1 -- xc-addr2)

Adds the size of the extended character stored at xc-addr1 to this address, giving
xc-addr2.

XCHAR- “??” XCHAR

(xc-addr1 -- xc-addr2)

Goes backward from xc-addr1 until it finds an extended character so that the size of this
extended character added to xc-addr2 gives xc-addr1. Note: XCHAR- isn’t guaranteed
to work for every possible encoding.

X-SIZE “??” XCHAR

(xc-addr u -- n)

n is the number of monospace ASCII characters that take the same space to display
as the extended character string starting at xc-addr, using u address units.

XKEY “??” XCHAR

(-- xc)

Reads an extended character xc from the terminal.

XEMIT “??” XCHAR

(xc --)

Prints the extended character xc on the terminal.

CHAR “??” XCHAR

(“〈spaces〉name” -- xc)

Skip leading space delimiters. Parse name delimited by a space. Put the value of its
first extended character onto the stack.

[CHAR] “??” XCHAR

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Append the run-time
semantics given below to the current definition.

Run-time: (-- xc)

Place xc, the value of the first extended character of name, on the stack.

L.5 Reference implementation:

Unfortunately, both the Gforth and the bigFORTH implementation have several system-specific
parts.

L.6 Experience:

Build into Gforth (development version) and recent versions of bigFORTH.

Open issues are file reading and writing (conversion on the fly or leave as it is?).

