
Forth 200x Standardisation Committee

Forth 2012 RC1

7th November, 2012

Notice: Status of this Document
This is a draft proposed Standard to replace ANSI X3.215-1994. As such, this is not a completed standard.
The Standardisation Committee may modify this document during the course of its work.

Forth 2012 RC1 CONTENTS

Contents

Contents v
Foreword . vi
Foreword to ANS Forth . vii
Proposals Process . viii
200x Membership . xi

1 Introduction 13
1.1 Purpose . 13
1.2 Scope . 13

1.2.1 Inclusions . 13
1.2.2 Exclusions . 13

1.3 Document organization . 13
1.3.1 Word sets . 13
1.3.2 Annexes . 14

1.4 Future directions . 14
1.4.1 New technology . 14
1.4.2 Obsolescent features . 14

2 Terms, notation, and references 16
2.1 Definitions of terms . 16
2.2 Notation . 18

2.2.1 Numeric notation . 19
2.2.2 Stack notation . 19
2.2.3 Parsed-text notation . 19
2.2.4 Glossary notation . 19

2.3 References . 21

3 Usage requirements 22
3.1 Data types . 22

3.1.1 Data-type relationships . 22
3.1.2 Character types . 22
3.1.3 Single-cell types . 25
3.1.4 Cell-pair types . 25
3.1.5 System types . 26

3.2 The implementation environment . 27
3.2.1 Numbers . 27
3.2.2 Arithmetic . 27
3.2.3 Stacks . 28
3.2.4 Operator terminal . 29
3.2.5 Mass storage . 29
3.2.6 Environmental queries . 29
3.2.7 Obsolescent Environmental Queries . 29

3.3 The Forth dictionary . 30

iii

CONTENTS Forth 2012 RC1

3.3.1 Name space . 30
3.3.2 Code space . 31
3.3.3 Data space . 31

3.4 The Forth text interpreter . 33
3.4.1 Parsing . 34
3.4.2 Finding definition names . 35
3.4.3 Semantics . 36
3.4.4 Possible actions on an ambiguous condition . 36
3.4.5 Compilation . 37

4 Documentation requirements 38
4.1 System documentation . 38

4.1.1 Implementation-defined options . 38
4.1.2 Ambiguous conditions . 39
4.1.3 Other system documentation . 41

4.2 Program documentation . 41
4.2.1 Environmental dependencies . 41
4.2.2 Other program documentation . 42

5 Compliance and labeling 43
5.1 Forth-2012 systems . 43

5.1.1 System compliance . 43
5.1.2 System labeling . 43

5.2 Forth-2012 programs . 43
5.2.1 Program compliance . 43
5.2.2 Program labeling . 43

6 Glossary 44
6.1 Core words . 44
6.2 Core extension words . 70

7 The optional Block word set 82

8 The optional Double-Number word set 88

9 The optional Exception word set 94

10 The optional Facility word set 99

11 The optional File-Access word set 109

12 The optional Floating-Point word set 120

13 The optional Locals word set 138

14 The optional Memory-Allocation word set 144

15 The optional Programming-Tools word set 147

iv

Forth 2012 RC1 CONTENTS

16 The optional Search-Order word set 155

17 The optional String word set 160

18 The optional Extended Characters wordset 165

A Rationale 172
A.1 Introduction . 172
A.2 Terms and notation . 172
A.3 Usage requirements . 173
A.4 Documentation requirements . 187
A.5 Compliance and labeling . 187
A.6 Glossary . 188
A.7 The optional Block word set . 204
A.8 The optional Double-Number word set . 205
A.9 The optional Exception word set . 206
A.10 The optional Facility word set . 207
A.11 The optional File-Access word set . 211
A.12 The optional Floating-Point word set . 213
A.13 The optional Locals word set . 216
A.14 The optional Memory-Allocation word set . 217
A.15 The optional Programming-Tools word set . 217
A.16 The optional Search-Order word set . 220
A.17 The optional String word set . 220
A.18 The optional Extended-Character word set . 222

B Bibliography 223

C Compatibility analysis 225
C.1 FIG Forth (circa 1978) . 225
C.2 Forth 79 . 225
C.3 Forth 83 . 225
C.4 ANS Forth (1994) . 226
C.5 ISO Forth (1997) . 227
C.6 Approach of this Standard . 227
C.7 Differences from Forth 94 . 227
C.8 Additional words . 228

D Portability guide 231
D.1 Introduction . 231
D.2 Hardware peculiarities . 231
D.3 Number representation . 233
D.4 Forth system implementation . 234
D.5 Summary . 235

E Alphabetic list of words 236

v

Foreword Forth 2012 RC1

Foreword

On completion of ANS Forth (ANS X3.215-1994 Information Systems — Programming Languages
FORTH) in 1994, the document was presented to and adopted as an international standard, by the ISO in
1997, being published as ISO/IEC 15145:1997 Information technology, Programming languages, FORTH.

The current project to update ANS Forth was launched at the 2004 EuroForth conference. The intention
being to allow the Forth community to contribute to a rolling standard. With changes to the document
being proposed and discussed in the electronic community, via the comp.lang.forth usenet news
group, the forth200x@yahoogroups.com email list, and the www.forth200x.org web site. An
open meeting to discuss proposals is held annually, immediately prior to the EuroForth conference.

This document is based on the final draft of the standard published by the Technical Committee on Forth
Programming Systems as part of development of ANS Forth (ANS X3.215-1994). It has been modified
in accordance with the directions of the Forth 200x Standards Committee which first met on October 21–
22, 2005 (Santander) and subsequently on September 14–15, 2006 (Cambridge), September 13–14, 2007
(Dagstuhl), September 25–26, 2008 (Vienna), March 25–27, 2009 (Neuenkirchen, Rheine), September 2–
4, 2009 (Exeter), March 24–26, 2010 (Rostock), September 22–24, 2010 (Hamburg), September 21–23,
2011 (Vienna), September 12–14, 2012 (Oxford).

vi

Forth 2012 RC1 Foreword

Foreword to ANS Forth

(This foreword is not a part of American National Standard X3.215-1994)

Forth is a language for direct communication between human beings and machines. Using natural-language
diction and machine-oriented syntax, Forth provides an economical, productive environment for interac-
tive compilation and execution of programs. Forth also provides low-level access to computer-controlled
hardware, and the ability to extend the language itself. This extensibility allows the language to be quickly
expanded and adapted to special needs and different hardware systems.

Forth was invented by Mr. Charles Moore to increase programmer productivity without sacrificing machine
efficiency. Forth is a layered environment containing the elements of a computer language as well as those
of an operating system and a machine monitor. This extensible, layered environment provides for highly
interactive program development and testing.

In the interests of transportability of application software written in Forth, standardization efforts began in
the mid-1970s by an international group of users and implementors who adopted the name “Forth Standards
Team”. This effort resulted in the Forth-77 Standard. As the language continued to evolve, an interim
Forth-78 Standard was published by the Forth Standards Team. Following Forth Standards Team meetings
in 1979, the Forth-79 Standard was published in 1980. Major changes were made by the Forth Standards
Team in the Forth-83 Standard, which was published in 1983.

The first meeting of the Technical Committee on Forth Programming Systems was convened by the Organ-
izing Committee of the X3J14 Forth Technical Committee on August 3, 1987, and has met subsequently
on November 11–12, 1987, February 10–12, 1988, May 25–28, 1988, August 10–13, 1988, October 26–
29, 1988, January 25–28, 1989, May 3–6, 1989, July 26–29, 1989, October 25–28, 1989, January 24–27,
1990, May 22–26, 1990, August 21–25, 1990, November 6–10,1990, January 29–February 2, 1991, May
3–4, 1991, June 16–19, 1991, July 30–August 3, 1991, March 17–21, 1992, October 13–17, 1992, January
26–30, 1993, June 28–30, 1993, and June 21, 1994.

This project has operated under joint sponsorship of IEEE as IEEE Project P1141. The TC gratefully
acknowledges the support of IEEE in this effort and the participation of the IEEE members who contributed
to our work as sponsored members and observers.

Requests for interpretation, suggestions for improvement or addenda, or defect reports are welcome. They
should be sent to the X3 Secretariat, Computer and Business Equipment Manufacturers Association, 1250
Eye Street, NW, Suite 200, Washington, DC 20005.

vii

Proposals Process Forth 2012 RC1

Proposals Process

In developing a standard it is necessary for the standards committee to know what the system implementors
and the programmers are already doing in that area, and what they would be willing to do, or wish for.

To that end we have introduced a system of consultation with the Forth community:

a) A proponent of an extension or change to the standard writes a proposal.

b) The proponent publishes the proposal as an RfD (Request for Discussion) by sending a copy to the
forth200x@yahoogroups.com email list and to the comp.lang.forth usenet news group
where it can be discussed. The maintainers of the www.forth200x.org web site will then place
a copy of the proposal on that web site.

Be warned, this will generate a lot of heated discussion.

In order for the results to be available in time for a standards meeting, an RfD should be published
at least 12 weeks before the next meeting.

If a proposal does not propose extensions or changes to the Forth language, but a rewording of the
current document, there is nothing for a system implementor to implement, or a programmer to use.
In such a case, the proposal should be published as a Request for Comment (RfC). The proposal will
be considered, along with any comments, at the next committee meeting.

c) The proponent can modify the proposal, taking any comments into consideration. Where comments
have been dismiss, both the comment and the reasons for its dismissal should be given. The revised
proposal is published as a revised RfD/RfC.

d) Once a proposal has settled down, it is frozen, and submitted to a vote taker, who then publishes
a CfV (Call for Votes) on the proposal. The vote taker will normally be a member of the stand-
ards committee. In the poll, system implementors can state, whether their systems implement the
proposal, or what the chances are that it ever will. Similarly, programmers can state whether they
have used something similar to the proposed extension and whether they would use the proposed
extension once it is standardized. The results of this poll are used by the standards committee when
deciding whether to accept the proposal into the standards document.

In order for the results to be available in time for a standards meeting, the CfV should be started at
least 6 weeks before that meeting.

e) One to two weeks after publishing the CfV, the vote taker will publish a Current Standings. Note
that the poll will remain open, especially for information on additional systems, and the results will
be updated on the Forth200x web page. The results considered at a standards meeting are those from
four weeks prior to that meeting. If no poll results are available by that deadline, the proposal will
be considered at a later meeting.

f) A proposal will only be accepted into the new basis document by consensus of those present at a
standards meeting. If you can not attend a meeting, you should ask somebody who is attending to
champion the proposal on your behalf.

Should a contributor consider their comments to have been dismissed without due consideration, they are
encouraged to submit a counter proposal.

viii

Forth 2012 RC1 Proposals Process

Proposals which have passed the poll will be integrated into the basis document in preparation for the
approaching Standards Committee meeting. Proposals often require some rewording in this process, so the
proponent should work with the editor to integrate the proposal into the document.

A proposal should give a rationale for the proposal, so that system implementors and programmers may
see the relevance of the proposal and why they should adopt (and vote for) it. The proposal should include
the following sections, where appropriate.

Author:
The name of the author(s) of the proposal.

Change Log:
A list of changes to the last published edition on the proposal.

Problem:
This states what problem the proposal addresses.

Solution:
An informal description of the proposed solution to the problem identified by the proposal.

Typical use:
Shows a typical use of the word/feature you propose; this should make the formal wording easier to
understand.

Remarks:
This gives the rationale for specific decisions you have taken in the proposal (often in response to
comments in the RfD phase), or discusses specific issues that have not been decided yet.

Proposal:
This is the formal or normative part of the proposal and should be as well specified as possible.

Some issues could be left undecided in the initial RfDs, leaving the issue open for discussion. These
issues should be mentioned in the Remarks section as well as in the Proposal section.

If you want to leave something open to the system implementor, make that explicit, e.g., by making
it an ambiguous condition.

For the wording of word definitions, it is normally a good idea to take your inspiration from existing
word definitions in the basis document. Where possible you should include the rationale for the
definition. Should a proposal be accepted where no rationale has been provided, the editor will
construct a rationale from other parts of the proposal. The proponent should work with the editor in
the development of this rationale.

Reference implementation:
This makes it easier for system implementors to adopt your proposal. Where possible they should be
provided in standard Forth, as defined by this document. Where this is not possible, system specific
knowledge is required or non standard words are used, this should be documented.

Testing:
This should test the feature/words you propose, in particular, it should test boundary conditions.
Where possible test cases should be written to conform with John Hayes tester.f test harness.

ix

Proposals Process Forth 2012 RC1

Experience:
Indicate where the proposal has already been implemented and/or used.

Comments:
Initially this is blank. As comments are made on the proposal, they should be incorporated into the
proposal. Comment which can not be incorporated should be included in this section. A response to
the comment may be included after the comment itself.

Instructions for responding to the poll:
Once the proposal enters the CfV stage, the vote taker will add these instructions to the proposal.

x

Forth 2012 RC1 200x Membership

200x Membership

This document is maintained by the Forth 200x Standards Committee. The committee meetings are open
to the public, anybody is allowed to join the committee in its deliberations.

Membership of the committee is open to anybody who can attend. On attending a meeting of any kind a
non-member becomes an observing member (observer). If they attend the next voting meeting, they will
become a voting member of the committee, otherwise they revert to non-member status. An observer will
not normally be allowed to vote, but may be allowed at the discretion of the committee. A member will be
deemed to have resigned from the committee if they fail to attend two consecutive voting meetings.

Currently the committee has the following voting members:

Dr. M. Anton Ertl (Chair) . Technische Universität Wien
ioc@t to m mi l u ann .apn w et. .gpa sn Wien, Austria

Dr. Peter Knaggs (Editor) . Independent Member
o u.g kbk .s@ rpj c Trowbridge, UK

Willem Botha . Construction Computer Software (Pty) Ltd
.bm t ch omc as@oe cal .l siw Cape Town, South Africa

Andrew Haley. Red Hat UK Ltd.
@ c md at.e hh opa r Cambridge, UK

Dr. Ulrich Hoffmann . FH Wedel
o dhtr e .- e@foh vu Wedel, Germany

Bernd Paysan . Diodes Inc.
ny. @ dmp aa xsn gdr .be e Munich, Germany

Stephen Pelc . MicroProcessor Engineering Ltd.
. oee eh cn p or@ h mp m tts f Southampton, UK

Dr. Bill Stoddart . Teesside University
oj g. mdts a mrd @ i .ca olw t. Middlesbrough, UK

Leon Wagner . FORTH, Inc.
mn ho .f t oc@ rl oe Los Angeles, USA

Gerald Wodni . GEE Solutions
gerald.wodni@gee.at Wien, Austria

xi

200x Membership Forth 2012 RC1

xii

Forth 2012 RC1 1. Introduction

American National Standard for Information Systems —
Programming Language —
Forth

1 Introduction

1.1 Purpose
The purpose of this Standard is to promote the portability of Forth programs for use on a wide variety
of computing systems, to facilitate the communication of programs, programming techniques, and ideas
among Forth programmers, and to serve as a basis for the future evolution of the Forth language.

1.2 Scope
This Standard specifies an interface between a Forth System and a Forth Program by defining the words
provided by a Standard System.

1.2.1 Inclusions

This Standard specifies:

– the forms that a program written in the Forth language may take;

– the rules for interpreting the meaning of a program and its data.

1.2.2 Exclusions

This Standard does not specify:

– the mechanism by which programs are transformed for use on computing systems;

– the operations required for setup and control of the use of programs on computing systems;

– the method of transcription of programs or their input or output data to or from a storage medium;

– the program and Forth system behavior when the rules of this Standard fail to establish an interpre-
tation;

– the size or complexity of a program and its data that will exceed the capacity of any specific comput-
ing system or the capability of a particular Forth system;

– the physical properties of input/output records, files, and units;

– the physical properties and implementation of storage.

1.3 Document organization

1.3.1 Word sets

This Standard groups Forth words and capabilities into word sets under a name indicating some shared
aspect, typically their common functional area. Each word set may have an extension, containing words

13

1. Introduction Forth 2012 RC1

that offer additional functionality. These words are not required in an implementation of the word set.

The “Core” word set, defined in sections 1 through 6, contains the required words and capabilities of a
Standard System. The other word sets, defined in sections 7 through 18, are optional, making it possible to
provide Standard Systems with tailored levels of functionality.

1.3.1.1 Text sections

Within each word set, section 1 contains introductory and explanatory material and section 2 introduces
terms and notation used throughout the Standard. There are no requirements in these sections.

Sections 3 and 4 contain the usage and documentation requirements, respectively, for Standard Systems
and Programs, while section 5 specifies their labeling.

1.3.1.2 Glossary sections

Section 6 of each word set specifies the required behavior of the definitions in the word set and the exten-
sions word set.

1.3.2 Annexes

The annexes do not contain any required material.

Annex A provides some of the rationale behind the committee’s decisions in creating this Standard, as well
as implementation examples. It has the same section numbering as the body of the Standard to make it easy
to relate each requirements section to its rationale section.

Annex B is a short bibliography on Forth.

Annex C discusses the compatibility of this standard with earlier Forths.

Annex D presents some techniques for writing portable programs.

Annex E is a list of all the words in all of the word sets in this standard and serves as an index of words.

1.4 Future directions

1.4.1 New technology

This Standard adopts certain words and practices that are increasingly found in common practice. New
words have also been adopted to ease creation of portable programs.

1.4.2 Obsolescent features

This Standard adopts certain words and practices that cause some previously used words and practices to
become obsolescent. Although retained here because of their widespread use, their use in new implement-
ations or new programs is discouraged, as they may be withdrawn from future revisions of the Standard.

This Standard designates the following word as obsolescent:

15.6.2.1580 FORGET

This standard designates the following practice as obsolescent:

14

Forth 2012 RC1 1. Introduction

– Requiring floating-point numbers to be kept on the data stack. (This has always been an environ-
mental dependency.)

– Using ENVIRONMENT? to enquire whether a word set is present.

15

2. Terms, notation, and references Forth 2012 RC1

2 Terms, notation, and references

The phrase “See:” is used throughout this Standard to direct the reader to other sections of the Standard
that have a direct bearing on the current section.

In this Standard, “shall” states a requirement on a system or program; conversely, “shall not” is a prohi-
bition; “need not” means “is not required to”; “should” describes a recommendation of the Standard; and
“may”, depending on context, means “is allowed to” or “might happen”.

Throughout the Standard, typefaces are used in the following manner:

– This proportional serif typeface is used for text, with italic used for symbols and the first appearance
of new terms;

– A bold proportional sans-serif typeface is used for headings;

– A bold monospaced serif typeface is used for Forth-language text.

2.1 Definitions of terms
Terms defined in this section are used generally throughout this Standard. Additional terms specific to
individual word sets are defined in those word sets. Other terms are defined at their first appearance,
indicated by italic type. Terms not defined in this Standard are to be construed according to the Dictionary
for Information Systems, ANSI X3.172-1990.

address unit: Depending on context, either 1) the units into which a Forth address space is divided for the
purposes of locating data objects such as characters and variables; 2) the physical memory storage
elements corresponding to those units; 3) the contents of such a memory storage element; or 4) the
units in which the length of a region of memory is expressed.

aligned address: The address of a memory location at which a character, cell, cell pair, or double-cell
integer can be accessed.

ambiguous condition: A circumstance for which this Standard does not prescribe a specific behavior for
Forth systems and programs.

Ambiguous conditions include such things as the absence of a needed delimiter while parsing, at-
tempted access to a nonexistent file, or attempted use of a nonexistent word. An ambiguous condition
also exists when a Standard word is passed values that are improper or out of range.

cell: The primary unit of information in the architecture of a Forth system.

cell pair: Two cells that are treated as a single unit.

character: Depending on context, either 1) a storage unit capable of holding a character; or 2) a member
of a character set.

character-aligned address: The address of a memory location at which a character can be accessed.

character string: Data space that is associated with a sequence of consecutive character-aligned ad-
dresses. Character strings usually contain text. Unless otherwise indicated, the term “string” means
“character string”.

16

Forth 2012 RC1 2. Terms, notation, and references

code space: The logical area of the dictionary in which word semantics are implemented.

compile: To transform source code into dictionary definitions.

compilation semantics: The behavior of a Forth definition when its name is encountered by the text in-
terpreter in compilation state.

counted string: A data structure consisting of one character containing a length followed by zero or more
contiguous data characters. Normally, counted strings contain text.

cross compiler: A system that compiles a program for later execution in an environment that may be phys-
ically and logically different from the compiling environment. In a cross compiler, the term “host”
applies to the compiling environment, and the term “target” applies to the run-time environment.

current definition: The definition whose compilation has been started but not yet ended.

data field: The data space associated with a word defined via CREATE.

data space: The logical area of the dictionary that can be accessed.

data-space pointer: The address of the next available data space location, i.e., the value returned by
HERE.

data stack: A stack that may be used for passing parameters between definitions. When there is no possi-
bility of confusion, the data stack is referred to as “the stack”. Contrast with return stack.

data type: An identifier for the set of values that a data object may have.

defining word: A Forth word that creates a new definition when executed.

definition: A Forth execution procedure compiled into the dictionary.

dictionary: An extensible structure that contains definitions and associated data space.

display: To send one or more characters to the user output device.

environmental dependencies: A program’s implicit assumptions about a Forth system’s implementation
options or underlying hardware. For example, a program that assumes a cell size greater than 16 bits
is said to have an environmental dependency.

execution semantics: The behavior of a Forth definition when it is executed.

execution token: A value that identifies the execution semantics of a definition.

find: To search the dictionary for a definition name matching a given string.

immediate word: A Forth word whose compilation semantics are to perform its execution semantics.

implementation defined: Denotes system behaviors or features that must be provided and documented
by a system but whose further details are not prescribed by this Standard.

implementation dependent: Denotes system behaviors or features that must be provided by a system but
whose further details are not prescribed by this Standard.

input buffer: A region of memory containing the sequence of characters from the input source that is
currently accessible to a program.

17

2. Terms, notation, and references Forth 2012 RC1

input source: The device, file, block, or other entity that supplies characters to refill the input buffer.

input source specification: A set of information describing a particular state of the input source, input
buffer, and parse area. This information is sufficient, when saved and restored properly, to enable the
nesting of parsing operations on the same or different input sources.

interpretation semantics: The behavior of a Forth definition when its name is encountered by the text
interpreter in interpretation state.

keyboard event: A value received by the system denoting a user action at the user input device. The term
“keyboard” in this document does not exclude other types of user input devices.

line: A sequence of characters followed by an actual or implied line terminator.

name space: The logical area of the dictionary in which definition names are stored.

number: In this Standard, “number” used without other qualification means “integer”. Similarly, “double
number” means “double-cell integer”.

parse: To select and exclude a character string from the parse area using a specified set of delimiting
characters, called delimiters.

parse area: The portion of the input buffer that has not yet been parsed, and is thus available to the system
for subsequent processing by the text interpreter and other parsing operations.

pictured-numeric output: A number display format in which the number is converted using Forth words
that resemble a symbolic “picture” of the desired output.

program: A complete specification of execution to achieve a specific function (application task) expressed
in Forth source code form.

receive: To obtain characters from the user input device.

return stack: A stack that may be used for program execution nesting, do-loop execution, temporary
storage, and other purposes.

standard word: A named Forth procedure, formally specified in this Standard.

user input device: The input device currently selected as the source of received data, typically a keyboard.

user output device: The output device currently selected as the destination of display data.

variable: A named region of data space located and accessed by its memory address.

word: Depending on context, either 1) the name of a Forth definition; or 2) a parsed sequence of non-space
characters, which could be the name of a Forth definition.

word list: A list of associated Forth definition names that may be examined during a dictionary search.

word set: A set of Forth definitions grouped together in this Standard under a name indicating some shared
aspect, typically their common functional area.

2.2 Notation
The following notation is used to define the syntax of some elements within the document:

18

Forth 2012 RC1 2. Terms, notation, and references

– Each component of the element is defined with a rule consisting of the name of the component
(italicized in angle-brackets, e.g., 〈decdigit〉), the characters := and a concatenation of tokens and
metacharacters;

– Tokens may be literal characters (in bold face, e.g., E) or rule names in angle brackets (e.g.,
〈decdigit〉);

– The metacharacter * is used to specify zero or more occurrences of the preceding token (e.g.,
〈decdigit〉*);

– Tokens enclosed with [and] are optional (e.g., [-]);

– Vertical bars separate choices from a list of tokens enclosed with braces (e.g., { 0 | 1 }).

See: 3.4.1.3 Text interpreter input number conversion, 12.3.7 Text interpreter input number conver-
sion, 12.6.1.0558 >FLOAT, 12.6.2.1613 FS., 13.6.2.2550 {:.

2.2.1 Numeric notation

Unless otherwise stated, all references to numbers apply to signed single-cell integers. The inclusive range
of values is shown as {from . . . to}. The allowable range for the contents of an address is shown in double
braces, particularly for the contents of variables, e.g., BASE {{2 . . . 36}}.

2.2.2 Stack notation

Stack parameters input to and output from a definition are described using the notation:

(stack-id: before -- after)

where stack-id specifies which stack is being described, before represents the stack-parameter data types
before execution of the definition and after represents them after execution. The symbols used in before
and after are shown in table 3.1.

The control-flow-stack stack-id is “C:”, the data-stack stack-id is “S:”, and the return-stack stack-id is “R:”.
When there is no confusion, the data-stack stack-id may be omitted.

When there are alternate after representations, they are described by “after1 | after2”. The top of the stack
is to the right. Only those stack items required for or provided by execution of the definition are shown.

2.2.3 Parsed-text notation

If, in addition to using stack parameters, a definition parses text, that text is specified by an abbreviation
from table 2.1, shown surrounded by double-quotes and placed between the before parameters and the “--”
separator in the first stack described, e.g.,

(S: before “parsed-text-abbreviation” -- after)

2.2.4 Glossary notation

The glossary entries for each word set are listed in the standard ASCII collating sequence. Each glossary
entry specifies a Forth word and consists of two parts: an index line and the semantic description of the
definition.

19

2. Terms, notation, and references Forth 2012 RC1

Table 2.1: Parsed text abbreviations
Abbreviation Description
〈char〉 the delimiting character marking the end of the string being parsed
〈chars〉 zero or more consecutive occurrences of the character 〈char〉
〈space〉 a delimiting space character
〈spaces〉 zero or more consecutive occurrences of the character 〈space〉
〈quote〉 a delimiting double quote
〈paren〉 a delimiting right parenthesis
〈eol〉 an implied delimiter marking the end of a line
ccc a parsed sequence of arbitrary characters, excluding the delimiter character
name a token delimited by space, equivalent to ccc〈space〉 or ccc〈eol〉

2.2.4.1 Glossary index line

The index line is a single-line entry containing, from left to right:

– Section number, the last four digits of which assign a unique sequential number to all words included
in this Standard;

– DEFINITION-NAME in upper-case, mono-spaced, bold-face letters;

– Natural-language pronunciation in quotes if it differs from English;

– Word-set designator from table 2.2. The designation for extensions word sets includes “EXT”.

– Extension designator in sans-serif font under the Word-set designator for words which have been
added to the Standard via the named extension.

Table 2.2: Word set designators
Word set Designator
Core word set CORE
Block word set BLOCK
Double-Number word set DOUBLE
Exception word set EXCEPTION
Facility word set FACILITY
File-Access word set FILE
Floating-Point word set FLOATING
Locals word set LOCALS
Memory-Allocation word set MEMORY
Programming-Tools word set TOOLS
Search-Order word set SEARCH
String-Handling word set STRING

2.2.4.2 Glossary semantic description

The first paragraph of the semantic description contains a stack notation for each stack affected by execution
of the word. The remaining paragraphs contain a text description of the semantics. See 3.4.3 Semantics.

20

Forth 2012 RC1 2. Terms, notation, and references

2.3 References
The following national and international standards are referenced in this Standard:

– ISO/IEC 15145:1997 Information technology. Programming languages. FORTH.

– ANSI X3.215-1994 Programming Languages – Forth.

– ANSI X3.172-1990 Dictionary for Information Systems, (2.1 Definitions of terms);

– ANSI X3.4-1974 American Standard Code for Information Interchange (ASCII), (3.1.2.1 Graphic
characters);

– ISO 646-1983 ISO 7-bit coded characterset for information interchange, International Reference
Version (IRV) (3.1.2.1 Graphic characters);

– ANSI/IEEE 754-1985 Floating-point Standard, (12.2.1 Definition of terms).

21

3. Usage requirements Forth 2012 RC1

3 Usage requirements

A system shall provide all of the words defined in 6.1 Core words. It may also provide any words defined
in the optional word sets and extensions word sets. No standard word provided by a system shall alter the
system state in a way that changes the effect of execution of any other standard word except as provided
in this Standard. A system may contain non-standard extensions, provided that they are consistent with the
requirements of this Standard.

The implementation of a system may use words and techniques outside the scope of this Standard.

A system need not provide all words in executable form. The implementation may provide definitions,
including definitions of words in the Core word set, in source form only. If so, the mechanism for adding
the definitions to the dictionary is implementation defined.

A program that requires a system to provide words or techniques not defined in this Standard has an
environmental dependency.

3.1 Data types
A data type identifies the set of permissible values for a data object. It is not a property of a particular
storage location or position on a stack. Moving a data object shall not affect its type.

No data-type checking is required of a system. An ambiguous condition exists if an incorrectly typed data
object is encountered.

Table 3.1 summarizes the data types used throughout this Standard. Multiple instances of the same type in
the description of a definition are suffixed with a sequence digit subscript to distinguish them.

3.1.1 Data-type relationships

Some of the data types are subtypes of other data types. A data type i is a subtype of type j if and only if
the members of i are a subset of the members of j. The following list represents the subtype relationships
using the phrase “i⇒ j” to denote “i is a subtype of j”. The subtype relationship is transitive; if i⇒ j and j
⇒ k then i⇒ k:

+n⇒ u⇒ x;
+n⇒ n⇒ x;
char⇒ +n;
a-addr⇒ c-addr⇒ addr⇒ u;
flag⇒ x;
xt⇒ x;
+d⇒ d⇒ xd;
+d⇒ ud⇒ xd.

Any Forth definition that accepts an argument of type i shall also accept an argument that is a subtype of i.

3.1.2 Character types

Characters shall have the following properties:

– be at least one address unit wide;

22

Forth 2012 RC1 3. Usage requirements

Table 3.1: Data types
Symbol Data type Size on stack
flag flag 1 cell
true true flag 1 cell
false false flag 1 cell
char character 1 cell
n signed number 1 cell
+n non-negative number 1 cell
u unsigned number 1 cell
u | n1 number 1 cell
x unspecified cell 1 cell
xt execution token 1 cell
addr address 1 cell
a-addr aligned address 1 cell
c-addr character-aligned address 1 cell
d double-cell signed number 2 cells
+d double-cell non-negative number 2 cells
ud double-cell unsigned number 2 cells
d | ud2 double-cell number 2 cells
xd unspecified cell pair 2 cells
colon-sys definition compilation implementation dependent
do-sys do-loop structures implementation dependent
case-sys CASE structures implementation dependent
of-sys OF structures implementation dependent
orig control-flow origins implementation dependent
dest control-flow destinations implementation dependent
loop-sys loop-control parameters implementation dependent
nest-sys definition cells implementation dependent
i×x, j×x, k×x3 any data type 0 or more cells

1 May be either a signed number or an unsigned number depending on context.
2 May be either a double-cell signed number or a double-cell unsigned number depend-

ing on context.
3 May be an undetermined number of stack entries of unspecified type. For examples

of use, see 6.1.1370 EXECUTE, 6.1.2050 QUIT.

23

3. Usage requirements Forth 2012 RC1

– contain at least eight bits;
– be of fixed width;
– have a size less than or equal to cell size;
– be unsigned.

The characters provided by a system shall include the graphic characters {32 . . . 126}, which represent
graphic forms as shown in table 3.2.

3.1.2.1 Graphic characters

A graphic character is one that is normally displayed (e.g., A, #, &, 6). These values and graphics, shown
in table 3.2, are taken directly from ANS X3.4-1974 (ASCII) and ISO 646-1983, International Reference
Version (IRV). The graphic forms of characters outside the hex range {20 . . . 7E} are implementation
defined. Programs that use the graphic hex 24 (the currency sign) have an environmental dependency.

The graphic representation of characters is not restricted to particular type fonts or styles. The graphics
here are examples.

Table 3.2: Standard graphic characters
Hex IRV ASCII Hex IRV ASCII Hex IRV ASCII Hex IRV ASCII Hex IRV ASCII Hex IRV ASCII
20 30 0 0 40 @ @ 50 P P 60 ‘ ‘ 70 p p
21 ! ! 31 1 1 41 A A 51 Q Q 61 a a 71 q q
22 " " 32 2 2 42 B B 52 R R 62 b b 72 r r
23 # # 33 3 3 43 C C 53 S S 63 c c 73 s s
24 ¤ $ 34 4 4 44 D D 54 T T 63 d d 74 t t
25 % % 35 5 5 45 E E 55 U U 64 e e 75 u u
26 & & 36 6 6 46 F F 56 V V 65 f f 76 v v
27 ’ ’ 37 7 7 47 G G 57 W W 66 g g 77 w w
28 ((38 8 8 48 H H 58 X X 67 h h 78 x x
29)) 39 9 9 49 I I 59 Y Y 68 i i 79 y y
2A * * 3A : : 4A J J 5A Z Z 69 j j 7A z z
2B + + 3B ; ; 4B K K 5B [[6A k k 7B { {
2C , , 3C < < 4C L L 5C \ \ 6C l l 7C | |
2D - - 3D = = 4D M M 5D]] 6D m m 7D } }
2E . . 3E > > 4E N N 5E ^ ^ 6E n n 7E ~ ~
2F / / 3F ? ? 4F O O 5F _ _ 6F o o

3.1.2.2 Control characters

All non-graphic characters included in the implementation-defined character set are defined in this Standard
as control characters. In particular, the characters {0 . . . 31}, which could be included in the implement-
ation-defined character set, are control characters.

Programs that require the ability to send or receive control characters have an environmental dependency.

3.1.2.3 Primitive Character

A primitive character (pchar) is a character with no restrictions on its contents. Unless otherwise stated, a
“character” refers to a primitive character.

24

Forth 2012 RC1 3. Usage requirements

3.1.3 Single-cell types

The implementation-defined fixed size of a cell is specified in address units and the corresponding number
of bits. See D.2 Hardware peculiarities.

Cells shall be at least one address unit wide and contain at least sixteen bits. The size of a cell shall be an
integral multiple of the size of a character. Data-stack elements, return-stack elements, addresses, execution
tokens, flags, and integers are one cell wide.

3.1.3.1 Flags

Flags may have one of two logical states, true or false. Programs that use flags as arithmetic operands have
an environmental dependency. A true flag returned by a standard word shall be a single-cell value with all
bits set. A false flag returned by a standard word shall be a single-cell value with all bits clear.

3.1.3.2 Integers

The implementation-defined range of signed integers shall include {-32767 . . . +32767}. The implement-
ation-defined range of non-negative integers shall include {0 . . . 32767}. The implementation-defined
range of unsigned integers shall include {0 . . . 65535}.

3.1.3.3 Addresses

An address identifies a location in data space with a size of one address unit, which a program may fetch
from or store into except for the restrictions established in this Standard. The size of an address unit
is specified in bits. Each distinct address value identifies exactly one such storage element. See 3.3.3
Data space.

The set of character-aligned addresses, addresses at which a character can be accessed, is an implement-
ation-defined subset of all addresses. Adding the size of a character to a character-aligned address shall
produce another character-aligned address.

The set of aligned addresses is an implementation-defined subset of character-aligned addresses. Adding
the size of a cell to an aligned address shall produce another aligned address.

3.1.3.4 Counted strings

A counted string in memory is identified by the address (c-addr) of its length character.

The length character of a counted string shall contain a binary representation of the number of data char-
acters, between zero and the implementation-defined maximum length for a counted string. The maximum
length of a counted string shall be at least 255.

3.1.3.5 Execution tokens

Different definitions may have the same execution token if the definitions are equivalent.

3.1.4 Cell-pair types

A cell pair in memory consists of a sequence of two contiguous cells. The cell at the lower address is the
first cell, and its address is used to identify the cell pair. Unless otherwise specified, a cell pair on a stack
consists of the first cell immediately above the second cell.

25

3. Usage requirements Forth 2012 RC1

3.1.4.1 Double-cell integers

On the stack, the cell containing the most significant part of a double-cell integer shall be above the cell
containing the least significant part.

The implementation-defined range of double-cell signed integers shall include {-2147483647 . . .
+2147483647}.

The implementation-defined range of double-cell non-negative integers shall include {0 . . . 2147483647}.

The implementation-defined range of double-cell unsigned integers shall include {0 . . . 4294967295}.
Placing the single-cell integer zero on the stack above a single-cell unsigned integer produces a double-cell
unsigned integer with the same value. See 3.2.1.1 Internal number representation.

3.1.4.2 Character strings

A string is specified by a cell pair (c-addr u) representing its starting address and length in characters.

3.1.5 System types

The system data types specify permitted word combinations during compilation and execution.

3.1.5.1 System-compilation types

These data types denote zero or more items on the control-flow stack (see 3.2.3.2). The possible presence
of such items on the data stack means that any items already there shall be unavailable to a program until
the control-flow-stack items are consumed.

The implementation-dependent data generated upon beginning to compile a definition and consumed at its
close is represented by the symbol colon-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile a do-loop structure such as DO
. . . LOOP and consumed at its close is represented by the symbol do-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile a CASE . . . ENDCASE structure
and consumed at its close is represented by the symbol case-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile an OF . . . ENDOF structure and
consumed at its close is represented by the symbol of-sys throughout this Standard.

The implementation-dependent data generated and consumed by executing the other standard control-flow
words is represented by the symbols orig and dest throughout this Standard.

3.1.5.2 System-execution types

These data types denote zero or more items on the return stack. Their possible presence means that any
items already on the return stack shall be unavailable to a program until the system-execution items are
consumed.

The implementation-dependent data generated upon beginning to execute a definition and consumed upon
exiting it is represented by the symbol nest-sys throughout this Standard.

26

Forth 2012 RC1 3. Usage requirements

The implementation-dependent loop-control parameters used to control the execution of do-loops are repre-
sented by the symbol loop-sys throughout this Standard. Loop-control parameters shall be available inside
the do-loop for words that use or change these parameters, words such as I, J, LEAVE and UNLOOP.

3.2 The implementation environment

3.2.1 Numbers

3.2.1.1 Internal number representation

This Standard allows one’s complement, two’s complement, or sign-magnitude number representations and
arithmetic. Arithmetic zero is represented as the value of a single cell with all bits clear.

The representation of a number as a compiled literal or in memory is implementation dependent.

3.2.1.2 Digit conversion

Numbers shall be represented externally by using characters from the standard character set. Conversion
between the internal and external forms of a digit shall behave as follows:

The value in BASE is the radix for number conversion. A digit has a value ranging from zero to one less than
the contents of BASE. The digit with the value zero corresponds to the character “0”. This representation
of digits proceeds through the character set to the decimal value nine corresponding to the character “9”.
For digits beginning with the decimal value ten the graphic characters beginning with the character “A” are
used. This correspondence continues up to and including the digit with the decimal value thirty-five which
is represented by the character “Z”. The conversion of digits outside this range is implementation defined.

3.2.1.3 Free-field number display

Free-field number display uses the characters described in digit conversion, without leading zeros, in a field
the exact size of the converted string plus a trailing space. If a number is zero, the least significant digit is
not considered a leading zero. If the number is negative, a leading minus sign is displayed.

Number display may use the pictured numeric output string buffer to hold partially converted strings (see
3.3.3.6 Other transient regions).

3.2.2 Arithmetic

3.2.2.1 Integer division

Division produces a quotient q and a remainder r by dividing operand a by operand b. Division operations
return q, r, or both. The identity b×q+ r = a shall hold for all a and b.

When unsigned integers are divided and the remainder is not zero, q is the largest integer less than the true
quotient.

When signed integers are divided, the remainder is not zero, and a and b have the same sign, q is the largest
integer less than the true quotient. If only one operand is negative, whether q is rounded toward negative
infinity (floored division) or rounded towards zero (symmetric division) is implementation defined.

Floored division is integer division in which the remainder carries the sign of the divisor or is zero, and the
quotient is rounded to its arithmetic floor. Symmetric division is integer division in which the remainder

27

3. Usage requirements Forth 2012 RC1

carries the sign of the dividend or is zero and the quotient is the mathematical quotient “rounded towards
zero” or “truncated”. Examples of each are shown in tables 3.3 and 3.4.

In cases where the operands differ in sign and the rounding direction matters, a program shall either include
code generating the desired form of division, not relying on the implementation-defined default result, or
have an environmental dependency on the desired rounding direction.

Table 3.3: Floored Division Example
Dividend Divisor Remainder Quotient

10 7 3 1
-10 7 4 -2
10 -7 -4 -2

-10 -7 -3 1

Table 3.4: Symmetric Division Example
Dividend Divisor Remainder Quotient

10 7 3 1
-10 7 -3 -1
10 -7 3 -1

-10 -7 -3 1

3.2.2.2 Other integer operations

In all integer arithmetic operations, both overflow and underflow shall be ignored. The value returned when
either overflow or underflow occurs is implementation defined.

3.2.3 Stacks

3.2.3.1 Data stack

Objects on the data stack shall be one cell wide.

3.2.3.2 Control-flow stack

The control-flow stack is a last-in, first out list whose elements define the permissible matchings of control-
flow words and the restrictions imposed on data-stack usage during the compilation of control structures.

The elements of the control-flow stack are system-compilation data types.

The control-flow stack may, but need not, physically exist in an implementation. If it does exist, it may be,
but need not be, implemented using the data stack. The format of the control-flow stack is implementation
defined. Since the control-flow stack may be implemented using the data stack, items placed on the data
stack are unavailable to a program after items are placed on the control-flow stack and remain unavailable
until the control-flow stack items are removed.

3.2.3.3 Return stack

Items on the return stack shall consist of one or more cells. A system may use the return stack in an
implementation-dependent manner during the compilation of definitions, during the execution of do-loops,
and for storing run-time nesting information.

A program may use the return stack for temporary storage during the execution of a definition subject to
the following restrictions:

– A program shall not access values on the return stack (using R@, R>, 2R@ or 2R>) that it did not
place there using >R or 2>R;

28

Forth 2012 RC1 3. Usage requirements

– A program shall not access from within a do-loop values placed on the return stack before the loop
was entered;

– All values placed on the return stack within a do-loop shall be removed before I, J, LOOP, +LOOP,
UNLOOP, or LEAVE is executed;

– All values placed on the return stack within a definition shall be removed before the definition is
terminated or before EXIT is executed.

3.2.4 Operator terminal

See 1.2.2 Exclusions.

3.2.4.1 User input device

The method of selecting the user input device is implementation defined.

The method of indicating the end of an input line of text is implementation defined.

3.2.4.2 User output device

The method of selecting the user output device is implementation defined.

3.2.5 Mass storage

A system need not provide any standard words for accessing mass storage. If a system provides any
standard word for accessing mass storage, it shall also implement the Block word set.

3.2.6 Environmental queries

The name spaces for ENVIRONMENT? and definitions are disjoint. Names of definitions that are the same
as ENVIRONMENT? strings shall not impair the operation of ENVIRONMENT?. Table 3.5 contains the
valid input strings and corresponding returned value for inquiring about the programming environment
with ENVIRONMENT?.

If an environmental query (using ENVIRONMENT?) returns false (i.e., unknown) in response to a string,
subsequent queries using the same string may return true. If a query returns true (i.e., known) in response
to a string, subsequent queries with the same string shall also return true. If a query designated as constant
in the above table returns true and a value in response to a string, subsequent queries with the same string
shall return true and the same value.

3.2.7 Obsolescent Environmental Queries

This standard designates the practice of using ENVIRONMENT? to inquire whether a given word set is
present as obsolescent. If such a query, as listed in table 3.6, returns true, the word set is present in the
form defined by Forth 94. As these queries will be withdrawn from future revisions of the Standard their
use in new programs is discouraged.

See A.3.2.7 Obsolescent Environmental Queries.

29

3. Usage requirements Forth 2012 RC1

Table 3.5: Environmental Query Strings
String Value data type Constant? Meaning
/COUNTED-STRING n yes maximum size of a counted string, in charac-

ters
/HOLD n yes size of the pictured numeric output string

buffer, in characters
/PAD n yes size of the scratch area pointed to by PAD, in

characters
ADDRESS-UNIT-BITS n yes size of one address unit, in bits
FLOORED flag yes true if floored division is the default
MAX-CHAR u yes maximum value of any character in the

implementation-defined character set
MAX-D d yes largest usable signed double number
MAX-N n yes largest usable signed integer
MAX-U u yes largest usable unsigned integer
MAX-UD ud yes largest usable unsigned double number
RETURN-STACK-CELLS n yes maximum size of the return stack, in cells
STACK-CELLS n yes maximum size of the data stack, in cells

3.3 The Forth dictionary
Forth words are organized into a structure called the dictionary. While the form of this structure is not
specified by the Standard, it can be described as consisting of three logical parts: a name space, a code
space, and a data space. The logical separation of these parts does not require their physical separation.

A program shall not fetch from or store into locations outside data space. An ambiguous condition exists
if a program addresses name space or code space.

3.3.1 Name space

The relationship between name space and data space is implementation dependent.

3.3.1.1 Word lists

The structure of a word list is implementation dependent. When duplicate names exist in a word list, the
latest-defined duplicate shall be the one found during a search for the name.

3.3.1.2 Definition names

Definition names shall contain {1 . . . 31} characters. A system may allow or prohibit the creation of
definition names containing non-standard characters. A system may allow the creation of definition names
longer than 31 characters. Programs with definition names longer than 31 characters have an environmental
dependency.

Programs that use lower case for standard definition names or depend on the case-sensitivity properties of
a system have an environmental dependency.

A program shall not create definition names containing non-graphic characters.

30

Forth 2012 RC1 3. Usage requirements

Table 3.6: Obsolescent Environmental Query Strings
String Value data type Constant? Meaning
CORE flag no true if complete core word set of Forth 94 is present

(i.e., not a subset as defined in 5.1.1)
CORE-EXT flag no true if the core extensions word set of Forth 94 is present
BLOCK flag no Forth 94 block word set present.
BLOCK-EXT flag no Forth 94 block extensions word set present.
DOUBLE flag no Forth 94 double number word set present.
DOUBLE-EXT flag no Forth 94 double number extensions word set present.
EXCEPTION flag no Forth 94 exception word set present.
EXCEPTION-EXT flag no Forth 94 exception extensions word set present.
FACILITY flag no Forth 94 facility word set present.
FACILITY-EXT flag no Forth 94 facility extensions word set present.
FILE flag no Forth 94 file word set present.
FILE-EXT flag no Forth 94 file extensions word set present.
FLOATING flag no Forth 94 floating-point word set present.
FLOATING-EXT flag no Forth 94 floating-point extensions word set present.
LOCALS flag no Forth 94 locals word set present.
LOCALS-EXT flag no Forth 94 locals extensions word set present.
MEMORY-ALLOC flag no Forth 94 memory-allocation word set present.
MEMORY-ALLOC-EXT flag no Forth 94 memory-allocation extensions word set present.
TOOLS flag no Forth 94 programming-tools word set present.
TOOLS-EXT flag no Forth 94 programming-tools extensions word set present.
SEARCH-ORDER flag no Forth 94 search-order word set present.
SEARCH-ORDER-EXT flag no Forth 94 search-order extensions word set present.
STRING flag no Forth 94 string word set present.
STRING-EXT flag no Forth 94 string extensions word set present.

3.3.2 Code space

The relationship between code space and data space is implementation dependent.

3.3.3 Data space

Data space is the only logical area of the dictionary for which standard words are provided to allocate
and access regions of memory. These regions are: contiguous regions, variables, text-literal regions, input
buffers, and other transient regions, each of which is described in the following sections. A program may
read from or write into these regions unless otherwise specified.

3.3.3.1 Address alignment

Most addresses are cell aligned (indicated by a-addr) or character aligned (c-addr). ALIGNED, CHAR+,
and arithmetic operations can alter the alignment state of an address on the stack. CHAR+ applied to an
aligned address returns a character-aligned address that can only be used to access characters. Applying
CHAR+ to a character-aligned address produces the succeeding character-aligned address. Adding or sub-
tracting an arbitrary number to an address can produce an unaligned address that shall not be used to fetch

31

3. Usage requirements Forth 2012 RC1

or store anything. The only way to find the next aligned address is with ALIGNED. An ambiguous condi-
tion exists when @, !, , (comma), +!, 2@, or 2! is used with an address that is not aligned, or when C@,
C!, or C, is used with an address that is not character-aligned.

The definitions of 6.1.1000 CREATE and 6.1.2410 VARIABLE require that the definitions created by them
return aligned addresses.

After definitions are compiled or the word ALIGN is executed the data-space pointer is guaranteed to be
aligned.

3.3.3.2 Contiguous regions

A system guarantees that a region of data space allocated using ALLOT, , (comma), C, (c-comma), and
ALIGN shall be contiguous with the last region allocated with one of the above words, unless the restric-
tions in the following paragraphs apply. The data-space pointer HERE always identifies the beginning of the
next data-space region to be allocated. As successive allocations are made, the data-space pointer increases.
A program may perform address arithmetic within contiguously allocated regions. The last region of data
space allocated using the above operators may be released by allocating a corresponding negatively-sized
region using ALLOT, subject to the restrictions of the following paragraphs.

CREATE establishes the beginning of a contiguous region of data space, whose starting address is returned
by the CREATEd definition. This region is terminated by compiling the next definition.

Since an implementation is free to allocate data space for use by code, the above operators need not pro-
duce contiguous regions of data space if definitions are added to or removed from the dictionary between
allocations. An ambiguous condition exists if deallocated memory contains definitions.

3.3.3.3 Variables

The region allocated for a variable may be non-contiguous with regions subsequently allocated with
, (comma) or ALLOT. For example, in:

VARIABLE X 1 CELLS ALLOT

the region X and the region ALLOTted could be non-contiguous.

Some system-provided variables, such as STATE, are restricted to read-only access.

3.3.3.4 Text-literal regions

The text-literal regions, specified by strings compiled with S" and C", may be read-only.

A program shall not store into the text-literal regions created by S" and C" nor into any read-only system
variable or read-only transient regions. An ambiguous condition exists when a program attempts to store
into read-only regions.

3.3.3.5 Input buffers

The address, length, and content of the input buffer may be transient. A program shall not write into the
input buffer. In the absence of any optional word sets providing alternative input sources, the input buffer
is either the terminal-input buffer, used by QUIT to hold one line from the user input device, or a buffer
specified by EVALUATE. In all cases, SOURCE returns the beginning address and length in characters of
the current input buffer.

32

Forth 2012 RC1 3. Usage requirements

The minimum size of the terminal-input buffer shall be 80 characters.

The address and length returned by SOURCE, the string returned by PARSE, and directly computed input-
buffer addresses are valid only until the text interpreter does I/O to refill the input buffer or the input source
is changed.

A program may modify the size of the parse area by changing the contents of >INwithin the limits imposed
by this Standard. For example, if the contents of >IN are saved before a parsing operation and restored
afterwards, the text that was parsed will be available again for subsequent parsing operations. The extent of
permissible repositioning using this method depends on the input source (see 7.3.2 Block buffer regions
and 11.3.3 Input source).

A program may directly examine the input buffer using its address and length as returned by SOURCE; the
beginning of the parse area within the input buffer is indexed by the number in >IN. The values are valid
for a limited time. An ambiguous condition exists if a program modifies the contents of the input buffer.

3.3.3.6 Other transient regions

The data space regions identified by PAD, WORD, and #> (the pictured numeric output string buffer) may
be transient. Their addresses and contents may become invalid after:

– a definition is created via a defining word;

– definitions are compiled with : or :NONAME;

– data space is allocated using ALLOT, , (comma), C, (c-comma), or ALIGN.

The previous contents of the regions identified by WORD and #> may be invalid after each use of these
words. Further, the regions returned by WORD and #> may overlap in memory. Consequently, use of one
of these words can corrupt a region returned earlier by a different word. The other words that construct
pictured numeric output strings (<#, #, #S, HOLD, HOLDS, XHOLD) may also modify the contents of
these regions. Words that display numbers may be implemented using pictured numeric output words.
Consequently, . (dot), .R, .S, ?, D., D.R, U., U.R could also corrupt the regions.

The size of the scratch area whose address is returned by PAD shall be at least 84 characters. The contents
of the region addressed by PAD are intended to be under the complete control of the user: no words defined
in this Standard place anything in the region, although changing data-space allocations as described in
3.3.3.2 Contiguous regions may change the address returned by PAD. Non-standard words provided by an
implementation may use PAD, but such use shall be documented.

The size of the region identified by WORD shall be at least 33 characters.

The size of the pictured numeric output string buffer shall be at least (2×n)+2 characters, where n is the
number of bits in a cell. Programs that consider it a fixed area with unchanging access parameters have an
environmental dependency.

3.4 The Forth text interpreter

Upon start-up, a system shall be able to interpret, as described by 6.1.2050 QUIT, Forth source code
received interactively from a user input device.

33

3. Usage requirements Forth 2012 RC1

Such interactive systems usually furnish a “prompt” indicating that they have accepted a user request and
acted on it. The implementation-defined Forth prompt should contain the word “OK” in some combination
of upper or lower case.

Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall repeat the following steps until
either the parse area is empty or an ambiguous condition exists:

a) Skip leading spaces and parse a name (see 3.4.1);

b) Search the dictionary name space (see 3.4.2). If a definition name matching the string is found:

1) if interpreting, perform the interpretation semantics of the definition (see 3.4.3.2), and continue
at a).

2) if compiling, perform the compilation semantics of the definition (see 3.4.3.3), and continue at
a).

c) If a definition name matching the string is not found, attempt to convert the string to a number (see
3.4.1.3). If successful:

1) if interpreting, place the number on the data stack, and continue at a);

2) if compiling, compile code that when executed will place the number on the stack (see 6.1.1780
LITERAL), and continue at a);

d) If unsuccessful, an ambiguous condition exists (see 3.4.4).

3.4.1 Parsing

Unless otherwise noted, the number of characters parsed may be from zero to the implementation-defined
maximum length of a counted string.

If the parse area is empty, i.e., when the number in >IN is equal to the length of the input buffer, or contains
no characters other than delimiters, the selected string is empty. Otherwise, the selected string begins with
the next character in the parse area, which is the character indexed by the contents of >IN. An ambiguous
condition exists if the number in >IN is greater than the size of the input buffer.

If delimiter characters are present in the parse area after the beginning of the selected string, the string
continues up to and including the character just before the first such delimiter, and the number in >IN is
changed to index immediately past that delimiter, thus removing the parsed characters and the delimiter
from the parse area. Otherwise, the string continues up to and including the last character in the parse area,
and the number in >IN is changed to the length of the input buffer, thus emptying the parse area.

Parsing may change the contents of >IN, but shall not affect the contents of the input buffer. Specifically, if
the value in >IN is saved before starting the parse, resetting >IN to that value immediately after the parse
shall restore the parse area without loss of data.

3.4.1.1 Delimiters

If the delimiter is the space character, hex 20 (BL), control characters may be treated as delimiters. The
set of conditions, if any, under which a “space” delimiter matches control characters is implementation
defined.

To skip leading delimiters is to pass by zero or more contiguous delimiters in the parse area before parsing.

34

Forth 2012 RC1 3. Usage requirements

3.4.1.2 Syntax

Forth has a simple, operator-ordered syntax. The phrase A B C returns values as if A were executed
first, then B and finally C. Words that cause deviations from this linear flow of control are called control-
flow words. Combinations of control-flow words whose stack effects are compatible form control-flow
structures. Examples of typical use are given for each control-flow word in A (Annex A).

Forth syntax is extensible; for example, new control-flow words can be defined in terms of existing ones.
This Standard does not require a syntax or program-construct checker.

3.4.1.3 Text interpreter input number conversion

When converting input numbers, the text interpreter shall recognize integer numbers in the form 〈anynum〉.

〈anynum〉 := { 〈BASEnum〉 | 〈decnum〉 | 〈hexnum〉 | 〈binnum〉 | 〈cnum〉 }
〈BASEnum〉 := [-]〈bdigit〉〈bdigit〉*
〈decnum〉 := #[-]〈decdigit〉〈decdigit〉*
〈hexnum〉 := $[-]〈hexdigit〉〈hexdigit〉*
〈binnum〉 := %[-]〈bindigit〉〈bindigit〉*
〈cnum〉 := ’〈char〉’
〈bindigit〉 := { 0 | 1 }
〈decdigit〉 := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }
〈hexdigit〉 := { 〈decdigit〉 | a | b | c | d | e | f | A | B | C | D | E | F }

〈bdigit〉 represents a digit according to the value of BASE (see 3.2.1.2 Digit conversion). For 〈hexdigit〉,
the digits a. . . f have the values 10. . . 15. 〈char〉 represents any printable character.

The radix used for number conversion is:

〈BASEnum〉 the value in BASE
〈decnum〉 10
〈hexnum〉 16
〈binnum〉 2
〈cnum〉 the number is the value of 〈char〉

See 2.2 Notation.

3.4.2 Finding definition names

A string matches a definition name if each character in the string matches the corresponding character in
the string used as the definition name when the definition was created. The case sensitivity (whether or not
the upper-case letters match the lower-case letters) is implementation defined. A system may be either case
sensitive, treating upper- and lower-case letters as different and not matching, or case insensitive, ignoring
differences in case while searching.

The matching of upper- and lower-case letters with alphabetic characters in character set extensions such
as accented international characters is implementation defined.

A system shall be capable of finding the definition names defined by this Standard when they are spelled
with upper-case letters.

35

3. Usage requirements Forth 2012 RC1

3.4.3 Semantics

The semantics of a Forth definition are implemented by machine code or a sequence of execution tokens
or other representations. They are largely specified by the stack notation in the glossary entries, which
shows what values shall be consumed and produced. The prose in each glossary entry further specifies the
definition’s behavior.

Each Forth definition may have several behaviors, described in the following sections. The terms “initia-
tion semantics” and “run-time semantics” refer to definition fragments, and have meaning only within the
individual glossary entries where they appear.

3.4.3.1 Execution semantics

The execution semantics of each Forth definition are specified in an “Execution:” section of its glossary
entry. When a definition has only one specified behavior, the label is omitted.

Execution may occur implicitly, when the definition into which it has been compiled is executed, or explic-
itly, when its execution token is passed to EXECUTE. The execution semantics of a syntactically correct
definition under conditions other than those specified in this Standard are implementation dependent.

Glossary entries for defining words include the execution semantics for the new definition in a “name
Execution:” section.

3.4.3.2 Interpretation semantics

Unless otherwise specified in an “Interpretation:” section of the glossary entry, the interpretation semantics
of a Forth definition are its execution semantics.

A system shall be capable of executing, in interpretation state, all of the definitions from the Core word
set and any definitions included from the optional word sets or word set extensions whose interpretation
semantics are defined by this Standard.

A system shall be capable of executing, in interpretation state, any new definitions created in accordance
with 3 Usage requirements.

3.4.3.3 Compilation semantics

Unless otherwise specified in a “Compilation:” section of the glossary entry, the compilation semantics
of a Forth definition shall be to append its execution semantics to the execution semantics of the current
definition.

3.4.4 Possible actions on an ambiguous condition

When an ambiguous condition exists, a system may take one or more of the following actions:

– ignore and continue;

– display a message;

– execute a particular word;

– set interpretation state and begin text interpretation;

– take other implementation-defined actions;

36

Forth 2012 RC1 3. Usage requirements

– take implementation-dependent actions.

The response to a particular ambiguous condition need not be the same under all circumstances.

3.4.5 Compilation

A program shall not attempt to nest compilation of definitions.

During the compilation of the current definition, a program shall not execute any defining word, :NONAME,
or any definition that allocates dictionary data space. The compilation of the current definition may be
suspended using [(left-bracket) and resumed using] (right-bracket). While the compilation of the current
definition is suspended, a program shall not execute any defining word, :NONAME, or any definition that
allocates dictionary data space.

37

4. Documentation requirements Forth 2012 RC1

4 Documentation requirements

When it is impossible or infeasible for a system or program to define a particular behavior itself, it is
permissible to state that the behavior is unspecifiable and to explain the circumstances and reasons why
this is so.

4.1 System documentation

4.1.1 Implementation-defined options

The implementation-defined items in the following list represent characteristics and choices left to the
discretion of the implementor, provided that the requirements of this Standard are met. A system shall
document the values for, or behaviors of, each item.

– aligned address requirements 3.1.3.3 Addresses;

– behavior of 6.1.1320 EMIT for non-graphic characters;

– character editing of 6.1.0695 ACCEPT;

– character set (3.1.2 Character types, 6.1.1320 EMIT, 6.1.1750 KEY);

– character-aligned address requirements (3.1.3.3 Addresses);

– character-set-extensions matching characteristics (3.4.2 Finding definition names);

– conditions under which control characters match a space delimiter (3.4.1.1 Delimiters);

– format of the control-flow stack (3.2.3.2 Control-flow stack);

– conversion of digits larger than thirty-five (3.2.1.2 Digit conversion);

– display after input terminates in 6.1.0695 ACCEPT;

– exception abort sequence (as in 6.1.0680 ABORT");

– input line terminator (3.2.4.1 User input device);

– maximum size of a counted string, in characters (3.1.3.4 Counted strings, 6.1.2450 WORD);

– maximum size of a parsed string (3.4.1 Parsing);

– maximum size of a definition name, in characters (3.3.1.2 Definition names);

– maximum string length for 6.1.1345 ENVIRONMENT?, in characters;

– method of selecting 3.2.4.1 User input device;

– method of selecting 3.2.4.2 User output device;

– methods of dictionary compilation (3.3 The Forth dictionary);

– number of bits in one address unit (3.1.3.3 Addresses);

– number representation and arithmetic (3.2.1.1 Internal number representation);

38

Forth 2012 RC1 4. Documentation requirements

– ranges for n, +n, u, d, +d, and ud (3.1.3 Single-cell types, 3.1.4 Cell-pair types);

– read-only data-space regions (3.3.3 Data space);

– size of buffer at 6.1.2450 WORD (3.3.3.6 Other transient regions);

– size of one cell in address units (3.1.3 Single-cell types);

– size of one character in address units (3.1.2 Character types);

– size of the keyboard terminal input buffer (3.3.3.5 Input buffers);

– size of the pictured numeric output string buffer (3.3.3.6 Other transient regions);

– size of the scratch area whose address is returned by 6.2.2000 PAD
(3.3.3.6 Other transient regions);

– system case-sensitivity characteristics (3.4.2 Finding definition names);

– system prompt (3.3 The Forth dictionary, 6.1.2050 QUIT);

– type of division rounding (3.2.2.1 Integer division, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0230 /,
6.1.0240 /MOD, 6.1.1890 MOD);

– values of 6.1.2250 STATE when true;

– values returned after arithmetic overflow (3.2.2.2 Other integer operations);

– whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :).

4.1.2 Ambiguous conditions

A system shall document the system action taken upon each of the general or specific ambiguous conditions
identified in this Standard. See 3.4.4 Possible actions on an ambiguous condition.

The following general ambiguous conditions could occur because of a combination of factors:

– a name is neither a valid definition name nor a valid number during text interpretation (3.4 The Forth
text interpreter);

– a definition name exceeded the maximum length allowed (3.3.1.2 Definition names);

– addressing a region not listed in 3.3.3 Data space;

– argument type incompatible with specified input parameter, e.g., passing a flag to a word expecting
an n (3.1 Data types);

– attempting to obtain the execution token, (e.g., with 6.1.0070 ’, 6.1.1550 FIND, etc. of a definition
with undefined interpretation semantics;

– dividing by zero (6.1.0100 */, 6.1.0110 */MOD, 6.1.0230 /, 6.1.0240 /MOD, 6.1.1561 FM/MOD,
6.1.1890 MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M*/);

– insufficient data-stack space or return-stack space (stack overflow);

– insufficient space for loop-control parameters;

– insufficient space in the dictionary;

39

4. Documentation requirements Forth 2012 RC1

– interpretating a word with undefined interpretation semantics;

– modifying the contents of the input buffer or a string literal (3.3.3.4 Text-literal regions, 3.3.3.5
Input buffers);

– overflow of a pictured numeric output string;

– parsed string overflow;

– producing a result out of range, e.g., multiplication (using *) results in a value too big to be re-
presented by a single-cell integer (6.1.0090 *, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0570 >NUMBER,
6.1.1561 FM/MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M*/);

– reading from an empty data stack or return stack (stack underflow);

– unexpected end of input buffer, resulting in an attempt to use a zero-length string as a name;

The following specific ambiguous conditions are noted in the glossary entries of the relevant words:

– >IN greater than size of input buffer (3.4.1 Parsing);

– 6.1.2120 RECURSE appears after 6.1.1250 DOES>;

– argument input source different than current input source for 6.2.2148 RESTORE-INPUT;

– data space containing definitions is de-allocated (3.3.3.2 Contiguous regions);

– data space read/write with incorrect alignment (3.3.3.1 Address alignment);

– data-space pointer not properly aligned (6.1.0150 ,, 6.1.0860 C,);

– less than u+2 stack items (6.2.2030 PICK, 6.2.2150 ROLL);

– loop-control parameters not available (6.1.0140 +LOOP, 6.1.1680 I, 6.1.1730 J, 6.1.1760 LEAVE,
6.1.1800 LOOP, 6.1.2380 UNLOOP);

– most recent definition does not have a name (6.1.1710 IMMEDIATE);

– 6.2.2295 TO not followed directly by a name defined by a word with “TO name runtime” semantics
(6.2.2405 VALUE and 13.6.1.0086 (LOCAL));

– name not found 6.1.0070 ’, 6.1.2033 POSTPONE, 6.1.2510 [’], 6.2.2530 [COMPILE]);

– parameters are not of the same type 6.1.1240 DO, 6.2.0620 ?DO, 6.2.2440 WITHIN);

– 6.1.2033 POSTPONE, 6.2.2530 [COMPILE], 6.1.0070 ’ or 6.1.2510 [’] applied to 6.2.2295 TO;

– string longer than a counted string returned by 6.1.2450 WORD;

– u greater than or equal to the number of bits in a cell (6.1.1805 LSHIFT, 6.1.2162 RSHIFT);

– word not defined via 6.1.1000 CREATE (6.1.0550 >BODY, 6.1.1250 DOES>);

– words improperly used outside 6.1.0490 <# and 6.1.0040 #> (6.1.0030 #, 6.1.0050 #S, 6.1.1670
HOLD, 6.2.1675 HOLDS, 6.1.2210 SIGN).

– access to a deferred word, a word defined by 6.2.1173 DEFER, which has yet to be assigned to an xt.

40

Forth 2012 RC1 4. Documentation requirements

– access to a deferred word, a word defined by 6.2.1173 DEFER, which was not defined by 6.2.1173
DEFER.

– 6.1.2033 POSTPONE, 6.2.2530 [COMPILE], 6.1.2510 [’] or 6.1.0070 ’ applied to 6.2.0698
ACTION-OF or 6.2.1725 IS.

– \x is not followed by two hexadecimal characters (6.2.2266 S\").

– a \ is placed before any character, other than those defined in 6.2.2266 S\".

4.1.3 Other system documentation

A system shall provide the following information:

– list of non-standard words using 6.2.2000 PAD (3.3.3.6 Other transient regions);

– operator’s terminal facilities available;

– program data space available, in address units;

– return stack space available, in cells;

– stack space available, in cells;

– system dictionary space required, in address units.

4.2 Program documentation

4.2.1 Environmental dependencies

A program shall document the following environmental dependencies, where they apply, and should docu-
ment other known environmental dependencies:

– considering the pictured numeric output string buffer a fixed area with unchanging access parameters
(3.3.3.6 Other transient regions);

– depending on the presence or absence of non-graphic characters in a received string (6.1.0695
ACCEPT);

– relying on a particular rounding direction (3.2.2.1 Integer division);

– requiring a particular number representation and arithmetic
(3.2.1.1 Internal number representation);

– requiring non-standard words or techniques (3 Usage requirements);

– requiring the ability to send or receive control characters (3.1.2.2 Control characters, 6.1.1750
KEY);

– using control characters to perform specific functions 6.1.1320 EMIT, 6.1.2310 TYPE);

– using flags as arithmetic operands (3.1.3.1 Flags);

– using lower case for standard definition names or depending on the case sensitivity of a system
(3.3.1.2 Definition names);

41

4. Documentation requirements Forth 2012 RC1

– using definition names of more than 31 characters in length (3.3.1.2 Definition names);

– using the graphic character with a value of hex 24 (3.1.2.1 Graphic characters).

4.2.2 Other program documentation

A program shall also document:

– minimum operator’s terminal facilities required;

– whether a Standard System exists after the program is loaded.

42

Forth 2012 RC1 5. Compliance and labeling

5 Compliance and labeling

5.1 Forth-2012 systems

5.1.1 System compliance

A system that complies with all the system requirements given in sections 3 Usage requirements and 4.1
System documentation and their sub-sections is a Standard System. An otherwise Standard System that
provides only a portion of the Core words is a Standard System Subset. An otherwise Standard System
(Subset) that fails to comply with one or more of the minimum values or ranges specified in 3 Usage
requirements and its sub-sections has environmental restrictions.

5.1.2 System labeling

A Standard System (Subset) shall be labeled a “Forth-2012 System (Subset)”. That label, by itself, shall
not be applied to Standard Systems or Standard System Subsets that have environmental restrictions.

The phrase “with Environmental Restrictions” shall be appended to the label of a Standard System (Subset)
that has environmental restrictions.

The phrase “Providing name(s) from the Core Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Core Extensions word set.

The phrase “Providing the Core Extensions word set” shall be appended to the label of any Standard System
that provides all of the Core Extensions word set.

5.2 Forth-2012 programs

5.2.1 Program compliance

A program that complies with all the program requirements given in sections 3 Usage requirements and
4.2 Program documentation and their sub-sections is a Standard Program.

5.2.2 Program labeling

A Standard Program shall be labeled a “Forth-2012 Program”. That label, by itself, shall not be applied
to Standard Programs that require the system to provide standard words outside the Core word set or that
have environmental dependencies.

The phrase “with Environmental Dependencies” shall be appended to the label of Standard Programs that
have environmental dependencies.

The phrase “Requiring name(s) from the Core Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Core Extensions word set.

The phrase “Requiring the Core Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Core Extensions word set.

43

6. CORE Word Set Forth 2012 RC1

6 Glossary

6.1 Core words
6.1.0010 ! “store” CORE

(x a-addr --)

Store x at a-addr.

See: 3.3.3.1 Address alignment.

6.1.0030 # “number-sign” CORE
(ud1 -- ud2)

Divide ud1 by the number in BASE giving the quotient ud2 and the remainder n. (n is the
least significant digit of ud1.) Convert n to external form and add the resulting character
to the beginning of the pictured numeric output string. An ambiguous condition exists if
executes outside of a <# #> delimited number conversion.

See: 6.1.0040 #>, 6.1.0050 #S, 6.1.0490 <#.

6.1.0040 #> “number-sign-greater” CORE
(xd -- c-addr u)

Drop xd. Make the pictured numeric output string available as a character string. c-addr
and u specify the resulting character string. A program may replace characters within
the string.

See: 6.1.0030 #, 6.1.0050 #S, 6.1.0490 <#.

6.1.0050 #S “number-sign-s” CORE
(ud1 -- ud2)

Convert one digit of ud1 according to the rule for #. Continue conversion until the
quotient is zero. ud2 is zero. An ambiguous condition exists if #S executes outside
of a <# #> delimited number conversion.

See: 6.1.0030 #, 6.1.0040 #>, 6.1.0490 <#.

6.1.0070 ’ “tick” CORE
(“〈spaces〉name” -- xt)

Skip leading space delimiters. Parse name delimited by a space. Find name and return
xt, the execution token for name. An ambiguous condition exists if name is not found.
When interpreting, ’ xyz EXECUTE is equivalent to xyz.

44 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

See: 3.4.3.2 Interpretation semantics, 3.4.1 Parsing, A.6.170.0 ’, A.6.1.2033 POSTPONE,
A.6.1.2510 [’].

6.1.0080 (“paren” CORE
Compilation: Perform the execution semantics given below.

Execution: (“ccc〈paren〉” --)

Parse ccc delimited by) (right parenthesis). (is an immediate word.

The number of characters in ccc may be zero to the number of characters in the parse
area.

See: 3.4.1 Parsing, 11.6.1.0080 (, A.6.180.0 (.

6.1.0090 * “star” CORE
(n1 | u1 n2 | u2 -- n3 | u3)

Multiply n1 | u1 by n2 | u2 giving the product n3 | u3.

6.1.0100 */ “star-slash” CORE
(n1 n2 n3 -- n4)

Multiply n1 by n2 producing the intermediate double-cell result d. Divide d by n3 giv-
ing the single-cell quotient n4. An ambiguous condition exists if n3 is zero or if the
quotient n4 lies outside the range of a signed number. If d and n3 differ in sign, the
implementation-defined result returned will be the same as that returned by either the
phrase >R M* R> FM/MOD SWAP DROP or the phrase >R M* R> SM/REM SWAP DROP.

See: 3.2.2.1 Integer division.

6.1.0110 */MOD “star-slash-mod” CORE
(n1 n2 n3 -- n4 n5)

Multiply n1 by n2 producing the intermediate double-cell result d. Divide d by n3 produc-
ing the single-cell remainder n4 and the single-cell quotient n5. An ambiguous condition
exists if n3 is zero, or if the quotient n5 lies outside the range of a single-cell signed in-
teger. If d and n3 differ in sign, the implementation-defined result returned will be the
same as that returned by either the phrase >R M* R> FM/MOD or the phrase >R M* R>
SM/REM.

See: 3.2.2.1 Integer division.

6.1.0120 + “plus” CORE
(n1 | u1 n2 | u2 -- n3 | u3)

Add n2 | u2 to n1 | u1, giving the sum n3 | u3.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 45

6. CORE Word Set Forth 2012 RC1

See: 3.3.3.1 Address alignment.

6.1.0130 +! “plus-store” CORE
(n | u a-addr --)

Add n | u to the single-cell number at a-addr.

See: 3.3.3.1 Address alignment.

6.1.0140 +LOOP “plus-loop” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: do-sys --)

Append the run-time semantics given below to the current definition. Resolve the desti-
nation of all unresolved occurrences of LEAVE between the location given by do-sys and
the next location for a transfer of control, to execute the words following +LOOP.

Run-time: (n --) (R: loop-sys1 -- | loop-sys2)

An ambiguous condition exists if the loop control parameters are unavailable. Add n to
the loop index. If the loop index did not cross the boundary between the loop limit minus
one and the loop limit, continue execution at the beginning of the loop. Otherwise, dis-
card the current loop control parameters and continue execution immediately following
the loop.

See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE, A.6.1.0140 +LOOP.

6.1.0150 , “comma” CORE
(x --)

Reserve one cell of data space and store x in the cell. If the data-space pointer is aligned
when , begins execution, it will remain aligned when , finishes execution. An ambigu-
ous condition exists if the data-space pointer is not aligned prior to execution of ,.

See: 3.3.3 Data space, 3.3.3.1 Address alignment, A.6.1.0150 ,.

6.1.0160 - “minus” CORE
(n1 | u1 n2 | u2 -- n3 | u3)

Subtract n2 | u2 from n1 | u1, giving the difference n3 | u3.

See: 3.3.3.1 Address alignment.

6.1.0180 . “dot” CORE
(n --)

Display n in free field format.

46 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

See: 3.2.1.2 Digit conversion, 3.2.1.3 Free-field number display.

6.1.0190 ." “dot-quote” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc〈quote〉” --)

Parse ccc delimited by " (double-quote). Append the run-time semantics given below to
the current definition.

Run-time: (--)

Display ccc.

See: 3.4.1 Parsing, 6.2.0200 .(, A.6.1.0190 .".

6.1.0230 / “slash” CORE
(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell quotient n3. An ambiguous condition exists if n2
is zero. If n1 and n2 differ in sign, the implementation-defined result returned will be
the same as that returned by either the phrase >R S>D R> FM/MOD SWAP DROP or the
phrase >R S>D R> SM/REM SWAP DROP.

See: 3.2.2.1 Integer division.

6.1.0240 /MOD “slash-mod” CORE
(n1 n2 -- n3 n4)

Divide n1 by n2, giving the single-cell remainder n3 and the single-cell quotient n4. An
ambiguous condition exists if n2 is zero. If n1 and n2 differ in sign, the implementation-
defined result returned will be the same as that returned by either the phrase >R S>D R>
FM/MOD or the phrase >R S>D R> SM/REM.

See: 3.2.2.1 Integer division.

6.1.0250 0< “zero-less” CORE
(n -- flag)

flag is true if and only if n is less than zero.

6.1.0270 0= “zero-equals” CORE
(x -- flag)

flag is true if and only if x is equal to zero.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 47

6. CORE Word Set Forth 2012 RC1

6.1.0290 1+ “one-plus” CORE
(n1 | u1 -- n2 | u2)

Add one (1) to n1 | u1 giving the sum n2 | u2.

6.1.0300 1- “one-minus” CORE
(n1 | u1 -- n2 | u2)

Subtract one (1) from n1 | u1 giving the difference n2 | u2.

6.1.0310 2! “two-store” CORE
(x1 x2 a-addr --)

Store the cell pair x1 x2 at a-addr, with x2 at a-addr and x1 at the next consecutive cell. It
is equivalent to the sequence SWAP OVER ! CELL+ !.

See: 3.3.3.1 Address alignment.

6.1.0320 2* “two-star” CORE
(x1 -- x2)

x2 is the result of shifting x1 one bit toward the most-significant bit, filling the vacated
least-significant bit with zero.

6.1.0330 2/ “two-slash” CORE
(x1 -- x2)

x2 is the result of shifting x1 one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

6.1.0350 2@ “two-fetch” CORE
(a-addr -- x1 x2)

Fetch the cell pair x1 x2 stored at a-addr. x2 is stored at a-addr and x1 at the next consec-
utive cell. It is equivalent to the sequence DUP CELL+ @ SWAP @.

See: 3.3.3.1 Address alignment, 6.1.0310 2!.

6.1.0370 2DROP “two-drop” CORE
(x1 x2 --)

Drop cell pair x1 x2 from the stack.

48 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.0380 2DUP “two-dupe” CORE
(x1 x2 -- x1 x2 x1 x2)

Duplicate cell pair x1 x2.

6.1.0400 2OVER “two-over” CORE
(x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

Copy cell pair x1 x2 to the top of the stack.

6.1.0430 2SWAP “two-swap” CORE
(x1 x2 x3 x4 -- x3 x4 x1 x2)

Exchange the top two cell pairs.

6.1.0450 : “colon” CORE
(C: “〈spaces〉name” -- colon-sys)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name, called a “colon definition”. Enter compilation state and start the current defini-
tion, producing colon-sys. Append the initiation semantics given below to the current
definition.

The execution semantics of name will be determined by the words compiled into the
body of the definition. The current definition shall not be findable in the dictionary until
it is ended (or until the execution of DOES> in some systems).

Initiation: (i×x -- i×x) (R: -- nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The
stack effects i×x represent arguments to name.

name Execution: (i×x -- j×x)

Execute the definition name. The stack effects i×x and j×x represent arguments to and
results from name, respectively.

See: 3.4.3.2 Interpretation semantics, 3.4.1 Parsing, 3.4.5 Compilation, 6.1.1250 DOES>,
6.1.2500 [, 6.1.2540], 15.6.2.0470 ;CODE, A.6.1.0450 :.

6.1.0460 ; “semicolon” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: colon-sys --)

Append the run-time semantics below to the current definition. End the current defi-
nition, allow it to be found in the dictionary and enter interpretation state, consuming
colon-sys. If the data-space pointer is not aligned, reserve enough data space to align it.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 49

6. CORE Word Set Forth 2012 RC1

Run-time: (--) (R: nest-sys --)

Return to the calling definition specified by nest-sys.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation, A.6.1.0460 ;.

6.1.0480 < “less-than” CORE
(n1 n2 -- flag)

flag is true if and only if n1 is less than n2.

See: 6.1.2340 U<.

6.1.0490 <# “less-number-sign” CORE
(--)

Initialize the pictured numeric output conversion process.

See: 6.1.0030 #, 6.1.0040 #>, 6.1.0050 #S.

6.1.0530 = “equals” CORE
(x1 x2 -- flag)

flag is true if and only if x1 is bit-for-bit the same as x2.

6.1.0540 > “greater-than” CORE
(n1 n2 -- flag)

flag is true if and only if n1 is greater than n2.

See: 6.2.2350 U>.

6.1.0550 >BODY “to-body” CORE
(xt -- a-addr)

a-addr is the data-field address corresponding to xt. An ambiguous condition exists if xt
is not for a word defined via CREATE.

See: 3.3.3 Data space, A.6.1.0550 >BODY.

6.1.0560 >IN “to-in” CORE
(-- a-addr)

a-addr is the address of a cell containing the offset in characters from the start of the
input buffer to the start of the parse area.

50 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.0570 >NUMBER “to-number” CORE
(ud1 c-addr1 u1 -- ud2 c-addr2 u2)

ud2 is the unsigned result of converting the characters within the string specified by
c-addr1 u1 into digits, using the number in BASE, and adding each into ud1 after multi-
plying ud1 by the number in BASE. Conversion continues left-to-right until a character
that is not convertible, including any “+” or “-”, is encountered or the string is entirely
converted. c-addr2 is the location of the first unconverted character or the first character
past the end of the string if the string was entirely converted. u2 is the number of uncon-
verted characters in the string. An ambiguous condition exists if ud2 overflows during
the conversion.

See: 3.2.1.2 Digit conversion.

6.1.0580 >R “to-r” CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (x --) (R: -- x)

Move x to the return stack.

See: 3.2.3.3 Return stack, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415
2R@.

6.1.0630 ?DUP “question-dupe” CORE
(x -- 0 | x x)

Duplicate x if it is non-zero.

6.1.0650 @ “fetch” CORE
(a-addr -- x)

x is the value stored at a-addr.

See: 3.3.3.1 Address alignment.

6.1.0670 ABORT CORE
(i×x --) (R: j×x --)

Empty the data stack and perform the function of QUIT, which includes emptying the
return stack, without displaying a message.

See: 9.6.2.0670 ABORT.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 51

6. CORE Word Set Forth 2012 RC1

6.1.0680 ABORT" “abort-quote” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc〈quote〉” --)

Parse ccc delimited by a " (double-quote). Append the run-time semantics given below
to the current definition.

Run-time: (i×x x1 -- | i×x) (R: j×x -- | j×x)

Remove x1 from the stack. If any bit of x1 is not zero, display ccc and perform an
implementation-defined abort sequence that includes the function of ABORT.

See: 3.4.1 Parsing, 9.6.2.0680 ABORT", A.6.1.0680 ABORT".

6.1.0690 ABS “abs” CORE
(n -- u)

u is the absolute value of n.

6.1.0695 ACCEPT CORE
(c-addr +n1 -- +n2)

Receive a string of at most +n1 characters. An ambiguous condition exists if +n1 is
zero or greater than 32,767. Display graphic characters as they are received. A program
that depends on the presence or absence of non-graphic characters in the string has an
environmental dependency. The editing functions, if any, that the system performs in
order to construct the string are implementation-defined.

Input terminates when an implementation-defined line terminator is received. When
input terminates, nothing is appended to the string, and the display is maintained in an
implementation-defined way.

+n2 is the length of the string stored at c-addr.

See: A.6.1.0695 ACCEPT.

6.1.0705 ALIGN CORE
(--)

If the data-space pointer is not aligned, reserve enough space to align it.

See: 3.3.3 Data space, 3.3.3.1 Address alignment, A.6.1.0705 ALIGN.

6.1.0706 ALIGNED CORE
(addr -- a-addr)

a-addr is the first aligned address greater than or equal to addr.

See: 3.3.3.1 Address alignment, 6.1.0705 ALIGN.

52 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.0710 ALLOT CORE
(n --)

If n is greater than zero, reserve n address units of data space. If n is less than zero,
release | n | address units of data space. If n is zero, leave the data-space pointer
unchanged.

If the data-space pointer is aligned and n is a multiple of the size of a cell when ALLOT
begins execution, it will remain aligned when ALLOT finishes execution.

If the data-space pointer is character aligned and n is a multiple of the size of a character
when ALLOT begins execution, it will remain character aligned when ALLOT finishes
execution.

See: 3.3.3 Data space.

6.1.0720 AND CORE
(x1 x2 -- x3)

x3 is the bit-by-bit logical “and” of x1 with x2.

6.1.0750 BASE CORE
(-- a-addr)

a-addr is the address of a cell containing the current number-conversion radix {{2...36}}.

6.1.0760 BEGIN CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- dest)

Put the next location for a transfer of control, dest, onto the control flow stack. Append
the run-time semantics given below to the current definition.

Run-time: (--)

Continue execution.

See: 3.2.3.2 Control-flow stack, 6.1.2140 REPEAT, 6.1.2390 UNTIL, 6.1.2430 WHILE,
A.6.1.0760 BEGIN.

6.1.0770 BL “b-l” CORE
(-- char)

char is the character value for a space.

See: A.6.1.0770 BL.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 53

6. CORE Word Set Forth 2012 RC1

6.1.0850 C! “c-store” CORE
(char c-addr --)

Store char at c-addr. When character size is smaller than cell size, only the number of
low-order bits corresponding to character size are transferred.

See: 3.3.3.1 Address alignment.

6.1.0860 C, “c-comma” CORE
(char --)

Reserve space for one character in the data space and store char in the space. If the data-
space pointer is character aligned when C, begins execution, it will remain character
aligned when C, finishes execution. An ambiguous condition exists if the data-space
pointer is not character-aligned prior to execution of C,.

See: 3.3.3 Data space, 3.3.3.1 Address alignment.

6.1.0870 C@ “c-fetch” CORE
(c-addr -- char)

Fetch the character stored at c-addr. When the cell size is greater than character size, the
unused high-order bits are all zeroes.

See: 3.3.3.1 Address alignment.

6.1.0880 CELL+ “cell-plus” CORE
(a-addr1 -- a-addr2)

Add the size in address units of a cell to a-addr1, giving a-addr2.

See: 3.3.3.1 Address alignment, A.6.1.0880 CELL+.

6.1.0890 CELLS CORE
(n1 -- n2)

n2 is the size in address units of n1 cells.

See: A.6.1.0880 CELL+, A.6.1.0890 CELLS.

6.1.0895 CHAR “char” CORE
(“〈spaces〉name” -- char)

Skip leading space delimiters. Parse name delimited by a space. Put the value of its first
character onto the stack.

See: 3.4.1 Parsing, 6.1.2520 [CHAR], A.6.1.0895 CHAR.

54 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.0897 CHAR+ “char-plus” CORE
(c-addr1 -- c-addr2)

Add the size in address units of a character to c-addr1, giving c-addr2.

See: 3.3.3.1 Address alignment.

6.1.0898 CHARS “chars” CORE
(n1 -- n2)

n2 is the size in address units of n1 characters.

6.1.0950 CONSTANT CORE
(x “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name is referred to as a “constant”.

name Execution: (-- x)

Place x on the stack.

See: 3.4.1 Parsing, A.6.1.0950 CONSTANT.

6.1.0980 COUNT CORE
(c-addr1 -- c-addr2 u)

Return the character string specification for the counted string stored at c-addr1. c-addr2
is the address of the first character after c-addr1. u is the contents of the character at
c-addr1, which is the length in characters of the string at c-addr2.

6.1.0990 CR “c-r” CORE
(--)

Cause subsequent output to appear at the beginning of the next line.

6.1.1000 CREATE CORE
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name with the execution semantics defined below. If the data-space pointer is not
aligned, reserve enough data space to align it. The new data-space pointer defines name’s
data field. CREATE does not allocate data space in name’s data field.

name Execution: (-- a-addr)

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 55

6. CORE Word Set Forth 2012 RC1

a-addr is the address of name’s data field. The execution semantics of name may be
extended by using DOES>.

See: 3.3.3 Data space, 6.1.1250 DOES>, A.6.1.1000 CREATE.

6.1.1170 DECIMAL CORE
(--)

Set the numeric conversion radix to ten (decimal).

6.1.1200 DEPTH CORE
(-- +n)

+n is the number of single-cell values contained in the data stack before +n was placed
on the stack.

6.1.1240 DO CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- do-sys)

Place do-sys onto the control-flow stack. Append the run-time semantics given below
to the current definition. The semantics are incomplete until resolved by a consumer of
do-sys such as LOOP.

Run-time: (n1 | u1 n2 | u2 --) (R: -- loop-sys)

Set up loop control parameters with index n2 | u2 and limit n1 | u1. An ambiguous
condition exists if n1 | u1 and n2 | u2 are not both the same type. Anything already on the
return stack becomes unavailable until the loop-control parameters are discarded.

See: 3.2.3.2 Control-flow stack, 6.1.0140 +LOOP, 6.1.1800 LOOP, A.6.1.1240 DO.

6.1.1250 DOES> “does” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: colon-sys1 -- colon-sys2)

Append the run-time semantics below to the current definition. Whether or not the cur-
rent definition is rendered findable in the dictionary by the compilation of DOES> is
implementation defined. Consume colon-sys1 and produce colon-sys2. Append the initi-
ation semantics given below to the current definition.

Run-time: (--) (R: nest-sys1 --)

Replace the execution semantics of the most recent definition, referred to as name, with
the name execution semantics given below. Return control to the calling definition spec-
ified by nest-sys1. An ambiguous condition exists if name was not defined with CREATE
or a user-defined word that calls CREATE.

56 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

Initiation: (i×x -- i×x a-addr) (R: -- nest-sys2)

Save implementation-dependent information nest-sys2 about the calling definition. Place
name’s data field address on the stack. The stack effects i×x represent arguments to
name.

name Execution: (i×x -- j×x)

Execute the portion of the definition that begins with the initiation semantics appended
by the DOES> which modified name. The stack effects i×x and j×x represent arguments
to and results from name, respectively.

See: 6.1.1000 CREATE, A.6.1.1250 DOES>.

6.1.1260 DROP CORE
(x --)

Remove x from the stack.

6.1.1290 DUP “dupe” CORE
(x -- x x)

Duplicate x.

6.1.1310 ELSE CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: orig1 -- orig2)

Put the location of a new unresolved forward reference orig2 onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics
will be incomplete until orig2 is resolved (e.g., by THEN). Resolve the forward reference
orig1 using the location following the appended run-time semantics.

Run-time: (--)

Continue execution at the location given by the resolution of orig2.

See: 6.1.1700 IF, 6.1.2270 THEN, A.6.1.1310 ELSE.

6.1.1320 EMIT CORE
(x --)

If x is a graphic character in the implementation-defined character set, display x. The
effect of EMIT for all other values of x is implementation-defined.

When passed a character whose character-defining bits have a value between hex 20
and 7E inclusive, the corresponding standard character, specified by 3.1.2.1 Graphic
characters, is displayed. Because different output devices can respond differently to

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 57

6. CORE Word Set Forth 2012 RC1

control characters, programs that use control characters to perform specific functions
have an environmental dependency. Each EMIT deals with only one character.

See: 6.1.2310 TYPE.

6.1.1345 ENVIRONMENT? “environment-query” CORE
(c-addr u -- false | i×x true)

c-addr is the address of a character string and u is the string’s character count. u may have
a value in the range from zero to an implementation-defined maximum which shall not be
less than 31. The character string should contain a keyword from 3.2.6 Environmental
queries or the optional word sets to be checked for correspondence with an attribute of
the present environment. If the system treats the attribute as unknown, the returned flag
is false; otherwise, the flag is true and the i×x returned is of the type specified in the
table for the attribute queried.

See: A.6.1.1345 ENVIRONMENT?.

6.1.1360 EVALUATE CORE
(i×x c-addr u -- j×x)

Save the current input source specification. Store minus-one (-1) in SOURCE-ID if it
is present. Make the string described by c-addr and u both the input source and input
buffer, set >IN to zero, and interpret. When the parse area is empty, restore the prior
input source specification. Other stack effects are due to the words EVALUATEd.

6.1.1370 EXECUTE CORE
(i×x xt -- j×x)

Remove xt from the stack and perform the semantics identified by it. Other stack effects
are due to the word EXECUTEd.

See: 6.1.0070 ’, 6.1.2510 [’].

6.1.1380 EXIT CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (--) (R: nest-sys --)

Return control to the calling definition specified by nest-sys. Before executing EXIT
within a do-loop, a program shall discard the loop-control parameters by executing
UNLOOP.

See: 3.2.3.3 Return stack, 6.1.2380 UNLOOP, A.6.1.1380 EXIT.

58 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.1540 FILL CORE
(c-addr u char --)

If u is greater than zero, store char in each of u consecutive characters of memory begin-
ning at c-addr.

6.1.1550 FIND CORE
(c-addr -- c-addr 0 | xt 1 | xt -1)

Find the definition named in the counted string at c-addr. If the definition is not found,
return c-addr and zero. If the definition is found, return its execution token xt. If the
definition is immediate, also return one (1), otherwise also return minus-one (-1). For
a given string, the values returned by FIND while compiling may differ from those re-
turned while not compiling.

See: 3.4.2 Finding definition names, A.6.170.0 ’, A.6.1.1550 FIND,
A.6.1.2033 POSTPONE, A.6.1.2510 [’].

6.1.1561 FM/MOD “f-m-slash-mod” CORE
(d1 n1 -- n2 n3)

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and output
stack arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient
lies outside the range of a single-cell signed integer.

See: 3.2.2.1 Integer division, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, A.6.1.1561 FM/MOD.

6.1.1650 HERE CORE
(-- addr)

addr is the data-space pointer.

See: 3.3.3.2 Contiguous regions.

6.1.1670 HOLD CORE
(char --)

Add char to the beginning of the pictured numeric output string. An ambiguous condi-
tion exists if HOLD executes outside of a <# #> delimited number conversion.

6.1.1680 I CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- n | u) (R: loop-sys -- loop-sys)

n | u is a copy of the current (innermost) loop index. An ambiguous condition exists if
the loop control parameters are unavailable.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 59

6. CORE Word Set Forth 2012 RC1

6.1.1700 IF CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- orig)

Put the location of a new unresolved forward reference orig onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete until orig is resolved, e.g., by THEN or ELSE.

Run-time: (x --)

If all bits of x are zero, continue execution at the location specified by the resolution of
orig.

See: 3.2.3.2 Control-flow stack, 6.1.1310 ELSE, 6.1.2270 THEN, A.6.1.1700 IF.

6.1.1710 IMMEDIATE CORE
(--)

Make the most recent definition an immediate word. An ambiguous condition exists if
the most recent definition does not have a name or if it was defined as a SYNONYM.

See: 15.6.2.2264 SYNONYM A.6.1.1710 IMMEDIATE.

6.1.1720 INVERT CORE
(x1 -- x2)

Invert all bits of x1, giving its logical inverse x2.

See: 6.1.1910 NEGATE, 6.1.0270 0=, A.6.1.1720 INVERT.

6.1.1730 J CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- n | u) (R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2)

n | u is a copy of the next-outer loop index. An ambiguous condition exists if the loop
control parameters of the next-outer loop, loop-sys1, are unavailable.

See: A.6.1.1730 J.

6.1.1750 KEY CORE
(-- char)

Receive one character char, a member of the implementation-defined character set. Key-
board events that do not correspond to such characters are discarded until a valid charac-
ter is received, and those events are subsequently unavailable.

All standard characters can be received. Characters received by KEY are not displayed.

60 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

Any standard character returned by KEY has the numeric value specified in 3.1.2.1
Graphic characters. Programs that require the ability to receive control characters have
an environmental dependency.

See: 10.6.2.1305 EKEY, 10.6.2.1307 EKEY?, 10.6.1.1755 KEY?, A.6.1.1750 KEY.

6.1.1760 LEAVE CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (--) (R: loop-sys --)

Discard the current loop control parameters. An ambiguous condition exists if they are
unavailable. Continue execution immediately following the innermost syntactically en-
closing DO. . .LOOP or DO. . .+LOOP.

See: 3.2.3.3 Return stack, 6.1.0140 +LOOP, 6.1.1800 LOOP, A.6.1.1760 LEAVE.

6.1.1780 LITERAL CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (x --)

Append the run-time semantics given below to the current definition.

Run-time: (-- x)

Place x on the stack.

See: A.6.1.1780 LITERAL.

6.1.1800 LOOP CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: do-sys --)

Append the run-time semantics given below to the current definition. Resolve the desti-
nation of all unresolved occurrences of LEAVE between the location given by do-sys and
the next location for a transfer of control, to execute the words following the LOOP.

Run-time: (--) (R: loop-sys1 -- | loop-sys2)

An ambiguous condition exists if the loop control parameters are unavailable. Add one
to the loop index. If the loop index is then equal to the loop limit, discard the loop
parameters and continue execution immediately following the loop. Otherwise continue
execution at the beginning of the loop.

See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVEA.6.1.1800 LOOP.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 61

6. CORE Word Set Forth 2012 RC1

6.1.1805 LSHIFT “l-shift” CORE
(x1 u -- x2)

Perform a logical left shift of u bit-places on x1, giving x2. Put zeroes into the least
significant bits vacated by the shift. An ambiguous condition exists if u is greater than
or equal to the number of bits in a cell.

6.1.1810 M* “m-star” CORE
(n1 n2 -- d)

d is the signed product of n1 times n2.

See: A.6.1.1810 M*.

6.1.1870 MAX CORE
(n1 n2 -- n3)

n3 is the greater of n1 and n2.

6.1.1880 MIN CORE
(n1 n2 -- n3)

n3 is the lesser of n1 and n2.

6.1.1890 MOD CORE
(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell remainder n3. An ambiguous condition exists if n2
is zero. If n1 and n2 differ in sign, the implementation-defined result returned will be the
same as that returned by either the phrase >R S>D R> FM/MOD DROP or the phrase >R
S>D R> SM/REM DROP.

See: 3.2.2.1 Integer division.

6.1.1900 MOVE CORE
(addr1 addr2 u --)

If u is greater than zero, copy the contents of u consecutive address units at addr1 to the
u consecutive address units at addr2. After MOVE completes, the u consecutive address
units at addr2 contain exactly what the u consecutive address units at addr1 contained
before the move.

See: 17.6.1.0910 CMOVE, 17.6.1.0920 CMOVE>, A.6.1.1900 MOVE.

62 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.1910 NEGATE CORE
(n1 -- n2)

Negate n1, giving its arithmetic inverse n2.

See: 6.1.1720 INVERT, 6.1.0270 0=.

6.1.1980 OR CORE
(x1 x2 -- x3)

x3 is the bit-by-bit inclusive-or of x1 with x2.

6.1.1990 OVER CORE
(x1 x2 -- x1 x2 x1)

Place a copy of x1 on top of the stack.

6.1.2033 POSTPONE CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the
compilation semantics of name to the current definition. An ambiguous condition exists
if name is not found.

See: 3.4.1 Parsing, A.6.1.2033 POSTPONE.

6.1.2050 QUIT CORE
(--) (R: i×x --)

Empty the return stack, store zero in SOURCE-ID if it is present, make the user input
device the input source, and enter interpretation state. Do not display a message. Repeat
the following:

– Accept a line from the input source into the input buffer, set >IN to zero, and
interpret.

– Display the implementation-defined system prompt if in interpretation state, all
processing has been completed, and no ambiguous condition exists.

See: 3.4 The Forth text interpreter.

6.1.2060 R> “r-from” CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- x) (R: x --)

Move x from the return stack to the data stack.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 63

6. CORE Word Set Forth 2012 RC1

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415
2R@.

6.1.2070 R@ “r-fetch” CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- x) (R: x -- x)

Copy x from the return stack to the data stack.

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415
2R@.

6.1.2120 RECURSE CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (--)

Append the execution semantics of the current definition to the current definition. An
ambiguous condition exists if RECURSE appears in a definition after DOES>.

See: 6.1.1250 DOES>, 6.1.2120 RECURSE, A.6.1.2120 RECURSE.

6.1.2140 REPEAT CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: orig dest --)

Append the run-time semantics given below to the current definition, resolving the back-
ward reference dest. Resolve the forward reference orig using the location following the
appended run-time semantics.

Run-time: (--)

Continue execution at the location given by dest.

See: 6.1.0760 BEGIN, 6.1.2430 WHILE, A.6.1.2140 REPEAT.

6.1.2160 ROT “rote” CORE
(x1 x2 x3 -- x2 x3 x1)

Rotate the top three stack entries.

6.1.2162 RSHIFT “r-shift” CORE
(x1 u -- x2)

Perform a logical right shift of u bit-places on x1, giving x2. Put zeroes into the most
significant bits vacated by the shift. An ambiguous condition exists if u is greater than
or equal to the number of bits in a cell.

64 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.2165 S" “s-quote” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc〈quote〉” --)

Parse ccc delimited by " (double-quote). Append the run-time semantics given below to
the current definition.

Run-time: (-- c-addr u)

Return c-addr and u describing a string consisting of the characters ccc. A program shall
not alter the returned string.

See: 3.4.1 Parsing, 6.2.0855 C", 11.6.1.2165 S", 6.2.2266 S\", A.6.1.2165 S".

6.1.2170 S>D “s-to-d” CORE
(n -- d)

Convert the number n to the double-cell number d with the same numerical value.

6.1.2210 SIGN CORE
(n --)

If n is negative, add a minus sign to the beginning of the pictured numeric output string.
An ambiguous condition exists if SIGN executes outside of a <# #> delimited number
conversion.

6.1.2214 SM/REM “s-m-slash-rem” CORE
(d1 n1 -- n2 n3)

Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. Input and output
stack arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient
lies outside the range of a single-cell signed integer.

See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2370 UM/MOD, A.6.114.0 SM/REM.

6.1.2216 SOURCE CORE
(-- c-addr u)

c-addr is the address of, and u is the number of characters in, the input buffer.

See: A.6.116.0 SOURCE.

6.1.2220 SPACE CORE
(--)

Display one space.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 65

6. CORE Word Set Forth 2012 RC1

6.1.2230 SPACES CORE
(n --)

If n is greater than zero, display n spaces.

6.1.2250 STATE CORE
(-- a-addr)

a-addr is the address of a cell containing the compilation-state flag. STATE is true
when in compilation state, false otherwise. The true value in STATE is non-zero, but is
otherwise implementation-defined. Only the following standard words alter the value in
STATE: : (colon), ; (semicolon), ABORT, QUIT, :NONAME, [(left-bracket),] (right-
bracket).

Note: A program shall not directly alter the contents of STATE.

See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ; 6.1.0670 ABORT, 6.1.2050
QUIT, 6.1.2500 [, 6.1.2540], 6.2.0455 :NONAME, 15.6.2.2250 STATE, A.6.150.0
STATE.

6.1.2260 SWAP CORE
(x1 x2 -- x2 x1)

Exchange the top two stack items.

6.1.2270 THEN CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: orig --)

Append the run-time semantics given below to the current definition. Resolve the for-
ward reference orig using the location of the appended run-time semantics.

Run-time: (--)

Continue execution.

See: 6.1.1310 ELSE, 6.1.1700 IF, A.6.170.0 THEN.

6.1.2310 TYPE CORE
(c-addr u --)

If u is greater than zero, display the character string specified by c-addr and u.

When passed a character in a character string whose character-defining bits have a value
between hex 20 and 7E inclusive, the corresponding standard character, specified by
3.1.2.1 Graphic characters, is displayed. Because different output devices can respond
differently to control characters, programs that use control characters to perform specific
functions have an environmental dependency.

66 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

See: 6.1.1320 EMIT.

6.1.2320 U. “u-dot” CORE
(u --)

Display u in free field format.

6.1.2340 U< “u-less-than” CORE
(u1 u2 -- flag)

flag is true if and only if u1 is less than u2.

See: 6.1.0480 <.

6.1.2360 UM* “u-m-star” CORE
(u1 u2 -- ud)

Multiply u1 by u2, giving the unsigned double-cell product ud. All values and arithmetic
are unsigned.

6.1.2370 UM/MOD “u-m-slash-mod” CORE
(ud u1 -- u2 u3)

Divide ud by u1, giving the quotient u3 and the remainder u2. All values and arithmetic
are unsigned. An ambiguous condition exists if u1 is zero or if the quotient lies outside
the range of a single-cell unsigned integer.

See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2214 SM/REM.

6.1.2380 UNLOOP CORE
Interpretation: Interpretation semantics for this word are undefined.

Execution: (--) (R: loop-sys --)

Discard the loop-control parameters for the current nesting level. An UNLOOP is required
for each nesting level before the definition may be EXITed. An ambiguous condition
exists if the loop-control parameters are unavailable.

See: 3.2.3.3 Return stack, A.6.1.2380 UNLOOP.

6.1.2390 UNTIL CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: dest --)

Append the run-time semantics given below to the current definition, resolving the back-
ward reference dest.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 67

6. CORE Word Set Forth 2012 RC1

Run-time: (x --)

If all bits of x are zero, continue execution at the location specified by dest.

See: 6.1.0760 BEGIN, A.6.1.2390 UNTIL.

6.1.2410 VARIABLE CORE
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve one cell of data space at an
aligned address.

name is referred to as a “variable”.

name Execution: (-- a-addr)

a-addr is the address of the reserved cell. A program is responsible for initializing the
contents of the reserved cell.

See: 3.4.1 Parsing, A.6.1.2410 VARIABLE.

6.1.2430 WHILE CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: dest -- orig dest)

Put the location of a new unresolved forward reference orig onto the control flow stack,
under the existing dest. Append the run-time semantics given below to the current defi-
nition. The semantics are incomplete until orig and dest are resolved (e.g., by REPEAT).

Run-time: (x --)

If all bits of x are zero, continue execution at the location specified by the resolution of
orig.

See: A.6.1.2430 WHILE.

6.1.2450 WORD CORE
(char “〈chars〉ccc〈char〉” -- c-addr)

Skip leading delimiters. Parse characters ccc delimited by char. An ambiguous condition
exists if the length of the parsed string is greater than the implementation-defined length
of a counted string.

c-addr is the address of a transient region containing the parsed word as a counted string.
If the parse area was empty or contained no characters other than the delimiter, the
resulting string has a zero length. A program may replace characters within the string.

See: 3.3.3.6 Other transient regions, 3.4.1 Parsing, A.6.1.2450 WORD.

68 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.1.2490 XOR “x-or” CORE
(x1 x2 -- x3)

x3 is the bit-by-bit exclusive-or of x1 with x2.

6.1.2500 [“left-bracket” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: Perform the execution semantics given below.

Execution: (--)

Enter interpretation state. [is an immediate word.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2540], A.6.1.2500 [.

6.1.2510 [’] “bracket-tick” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the
run-time semantics given below to the current definition.

An ambiguous condition exists if name is not found.

Run-time: (-- xt)

Place name’s execution token xt on the stack. The execution token returned by the com-
piled phrase “[’] X” is the same value returned by “’ X” outside of compilation state.

See: 3.4.1 Parsing, 6.1.1550 FIND, A.6.170.0 ’ A.6.1.2033 POSTPONE, A.6.1.2510 [’].

6.1.2520 [CHAR] “bracket-char” CORE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Append the run-time
semantics given below to the current definition.

Run-time: (-- char)

Place char, the value of the first character of name, on the stack.

See: 3.4.1 Parsing, 6.1.0895 CHAR, A.6.1.2520 [CHAR].

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 69

6. CORE Word Set Forth 2012 RC1

6.1.2540] “right-bracket” CORE
(--)

Enter compilation state.

See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2500 [, A.6.1.2540].

6.2 Core extension words
6.2.0200 .(“dot-paren” CORE EXT

Compilation: Perform the execution semantics given below.

Execution: (“ccc〈paren〉” --)

Parse and display ccc delimited by) (right parenthesis). .(is an immediate word.

See: 3.4.1 Parsing, 6.1.0190 .", A.6.2.0200 .(.

6.2.0210 .R “dot-r” CORE EXT
(n1 n2 --)

Display n1 right aligned in a field n2 characters wide. If the number of characters required
to display n1 is greater than n2, all digits are displayed with no leading spaces in a field
as wide as necessary.

See: A.6.2.0210 .R.

6.2.0260 0<> “zero-not-equals” CORE EXT
(x -- flag)

flag is true if and only if x is not equal to zero.

6.2.0280 0> “zero-greater” CORE EXT
(n -- flag)

flag is true if and only if n is greater than zero.

6.2.0340 2>R “two-to-r” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (x1 x2 --) (R: -- x1 x2)

Transfer cell pair x1 x2 to the return stack. Semantically equivalent to SWAP >R >R.

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0410 2R>, 6.2.0415
2R@, A.6.2.0340 2>R.

70 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.2.0410 2R> “two-r-from” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- x1 x2) (R: x1 x2 --)

Transfer cell pair x1 x2 from the return stack. Semantically equivalent to R> R> SWAP.

See: 3.2.3.3 Return stack, 6.1.0580 >R 6.1.2060 R> 6.1.2070 R@ 6.2.0340 2>R, 6.2.0415
2R@, A.6.2.0410 2R>.

6.2.0415 2R@ “two-r-fetch” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- x1 x2) (R: x1 x2 -- x1 x2)

Copy cell pair x1 x2 from the return stack. Semantically equivalent to R> R> 2DUP >R
>R SWAP.

See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410
2R>.

6.2.0455 :NONAME “colon-no-name” CORE EXT
(C: -- colon-sys) (S: -- xt)

Create an execution token xt, enter compilation state and start the current definition, pro-
ducing colon-sys. Append the initiation semantics given below to the current definition.

The execution semantics of xt will be determined by the words compiled into the body
of the definition. This definition can be executed later by using xt EXECUTE.

If the control-flow stack is implemented using the data stack, colon-sys shall be the
topmost item on the data stack. See 3.2.3.2 Control-flow stack.

Initiation: (i×x -- i×x) (R: -- nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The
stack effects i×x represent arguments to xt.

xt Execution: (i×x -- j×x)

Execute the definition specified by xt. The stack effects i×x and j×x represent arguments
to and results from xt, respectively.

See: A.6.2.0455 :NONAME.

6.2.0500 <> “not-equals” CORE EXT
(x1 x2 -- flag)

flag is true if and only if x1 is not bit-for-bit the same as x2.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 71

6. CORE Word Set Forth 2012 RC1

6.2.0620 ?DO “question-do” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- do-sys)

Put do-sys onto the control-flow stack. Append the run-time semantics given below to
the current definition. The semantics are incomplete until resolved by a consumer of
do-sys such as LOOP.

Run-time: (n1 | u1 n2 | u2 --) (R: -- loop-sys)

If n1 | u1 is equal to n2 | u2, continue execution at the location given by the consumer of
do-sys. Otherwise set up loop control parameters with index n2 | u2 and limit n1 | u1 and
continue executing immediately following ?DO. Anything already on the return stack
becomes unavailable until the loop control parameters are discarded. An ambiguous
condition exists if n1 | u1 and n2 | u2 are not both of the same type.

See: 3.2.3.2 Control-flow stack, 6.1.0140 +LOOP, 6.1.1240 DO, 6.1.1680 I,
6.1.1760 LEAVE, 6.1.1800 LOOP, 6.1.2380 UNLOOP, A.6.2.0620 ?DO.

6.2.0698 ACTION-OF CORE EXT
Interpretation: (“〈spaces〉name” -- xt)

Skip leading spaces and parse name delimited by a space. xt is the execution token
that name is set to execute. An ambiguous condition exists if name was not defined by
DEFER, or if the name has not been set to execute an xt.

Compilation: (“〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not
defined by DEFER.

Run-time: (-- xt)

xt is the execution token that name is set to execute. An ambiguous condition exists if
name has not been set to execute an xt.

An ambiguous condition exists if POSTPONE, [COMPILE], [’] or ’ is applied to
ACTION-OF.

See: 6.2.1173 DEFER, 6.2.1175 DEFER!, 6.2.1177 DEFER@, 6.2.1725 IS.

6.2.0700 AGAIN CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: dest --)

Append the run-time semantics given below to the current definition, resolving the back-
ward reference dest.

72 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

Run-time: (--)

Continue execution at the location specified by dest. If no other control flow words are
used, any program code after AGAIN will not be executed.

See: 6.1.0760 BEGIN, A.6.2.0700 AGAIN.

6.2.0825 BUFFER: “buffer-colon” CORE EXT
(u “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name, with the execution semantics defined below. Reserve u address units at an aligned
address. Contiguity of this region with any other region is undefined.

name Execution: (-- a-addr)

a-addr is the address of the space reserved by BUFFER: when it defined name. The
program is responsible for initializing the contents.

See: A.6.2.0825 BUFFER:.

6.2.0855 C" “c-quote” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc〈quote〉” --)

Parse ccc delimited by " (double-quote) and append the run-time semantics given below
to the current definition.

Run-time: (-- c-addr)

Return c-addr, a counted string consisting of the characters ccc. A program shall not
alter the returned string.

See: 3.4.1 Parsing, 6.1.2165 S", 11.6.1.2165 S", A.6.2.0855 C".

6.2.0873 CASE CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- case-sys)

Mark the start of the CASE. . .OF. . .ENDOF. . .ENDCASE structure. Append the run-time
semantics given below to the current definition.

Run-time: (--)

Continue execution.

See: 6.2.1342 ENDCASE, 6.2.1343 ENDOF, 6.2.1950 OF, A.6.2.0873 CASE.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 73

6. CORE Word Set Forth 2012 RC1

6.2.0945 COMPILE, “compile-comma” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (xt --)

Append the execution semantics of the definition represented by xt to the execution se-
mantics of the current definition.

See: A.6.2.0945 COMPILE,.

6.2.1173 DEFER CORE EXT
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name Execution: (i×x -- j×x)

Execute the xt that name is set to execute. An ambiguous condition exists if name has
not been set to execute an xt.

See: 6.2.0698 ACTION-OF, 6.2.1175 DEFER!, 6.2.1177 DEFER@, 6.2.1725 IS.

6.2.1175 DEFER! “defer-store” CORE EXT
(xt2 xt1 --)

Set the word xt1 to execute xt2. An ambiguous condition exists if xt1 is not for a word
defined by DEFER.

See: 6.2.0698 ACTION-OF, 6.2.1173 DEFER, 6.2.1177 DEFER@, 6.2.1725 IS.

6.2.1177 DEFER@ “defer-fetch” CORE EXT
(xt1 -- xt2)

xt2 is the execution token xt1 is set to execute. An ambiguous condition exists if xt1 is not
the execution token of a word defined by DEFER, or if xt1 has not been set to execute an
xt.

See: 6.2.0698 ACTION-OF, 6.2.1173 DEFER, 6.2.1175 DEFER!, 6.2.1725 IS.

6.2.1342 ENDCASE “end-case” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: case-sys --)

Mark the end of the CASE. . .OF. . .ENDOF. . .ENDCASE structure. Use case-sys to re-
solve the entire structure. Append the run-time semantics given below to the current
definition.

74 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

Run-time: (x --)

Discard the case selector x and continue execution.

See: 6.2.0873 CASE, 6.2.1343 ENDOF, 6.2.1950 OF, A.6.2.1342 ENDCASE.

6.2.1343 ENDOF “end-of” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: case-sys1 of-sys -- case-sys2)

Mark the end of the OF. . .ENDOF part of the CASE structure. The next location for a
transfer of control resolves the reference given by of-sys. Append the run-time semantics
given below to the current definition. Replace case-sys1 with case-sys2 on the control-
flow stack, to be resolved by ENDCASE.

Run-time: (--)

Continue execution at the location specified by the consumer of case-sys2.

See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1950 OF, A.6.2.1343 ENDOF.

6.2.1350 ERASE CORE EXT
(addr u --)

If u is greater than zero, clear all bits in each of u consecutive address units of memory
beginning at addr.

6.2.1485 FALSE CORE EXT
(-- false)

Return a false flag.

See: 3.1.3.1 Flags

6.2.1660 HEX CORE EXT
(--)

Set contents of BASE to sixteen.

6.2.1675 HOLDS CORE EXT
(c-addr u --)

Adds the string represented by c-addr u to the pictured numeric output string. An am-
biguous condition exists if HOLDS executes outside of a <# #> delimited number con-
version.

See: 6.1.1670 HOLD.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 75

6. CORE Word Set Forth 2012 RC1

6.2.1725 IS CORE EXT
Interpretation: (xt “〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Set name to execute xt.

An ambiguous condition exists if name was not defined by DEFER.

Compilation: (“〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not
defined by DEFER.

Run-time: (xt --)

Set name to execute xt.

An ambiguous condition exists if POSTPONE, [COMPILE], [’] or ’ is applied to IS.

See: 6.2.0698 ACTION-OF, 6.2.1173 DEFER, 6.2.1175 DEFER!, 6.2.1177 DEFER@.

6.2.1850 MARKER CORE EXT
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name Execution: (--)

Restore all dictionary allocation and search order pointers to the state they had just prior
to the definition of name. Remove the definition of name and all subsequent definitions.
Restoration of any structures still existing that could refer to deleted definitions or deal-
located data space is not necessarily provided. No other contextual information such as
numeric base is affected.

See: 3.4.1 Parsing, 15.6.2.1580 FORGET, A.6.2.1850 MARKER.

6.2.1930 NIP CORE EXT
(x1 x2 -- x2)

Drop the first item below the top of stack.

6.2.1950 OF CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- of-sys)

Put of-sys onto the control flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consumer of of-sys
such as ENDOF.

76 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

Run-time: (x1 x2 -- x1)

If the two values on the stack are not equal, discard the top value and continue execution
at the location specified by the consumer of of-sys, e.g., following the next ENDOF.
Otherwise, discard both values and continue execution in line.

See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1343 ENDOF, A.6.2.1950 OF.

6.2.2000 PAD CORE EXT
(-- c-addr)

c-addr is the address of a transient region that can be used to hold data for intermediate
processing.

See: 3.3.3.6 Other transient regions, A.6.2.2000 PAD.

6.2.2008 PARSE CORE EXT
(char “ccc〈char〉” -- c-addr u)

Parse ccc delimited by the delimiter char.

c-addr is the address (within the input buffer) and u is the length of the parsed string. If
the parse area was empty, the resulting string has a zero length.

See: 3.4.1 Parsing, A.6.2.2008 PARSE.

6.2.2020 PARSE-NAME CORE EXT
(“〈spaces〉name〈space〉” -- c-addr u)

Skip leading space delimiters. Parse name delimited by a space.

c-addr is the address of the selected string within the input buffer and u is its length in
characters. If the parse area is empty or contains only white space, the resulting string
has length zero.

6.2.2030 PICK CORE EXT
(xu. . . x1 x0 u -- xu. . . x1 x0 xu)

Remove u. Copy the xu to the top of the stack. An ambiguous condition exists if there
are less than u+2 items on the stack before PICK is executed.

See: A.6.2.2030 PICK.

6.2.2125 REFILL CORE EXT
(-- flag)

Attempt to fill the input buffer from the input source, returning a true flag if successful.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 77

6. CORE Word Set Forth 2012 RC1

When the input source is the user input device, attempt to receive input into the terminal
input buffer. If successful, make the result the input buffer, set >IN to zero, and return
true. Receipt of a line containing no characters is considered successful. If there is no
input available from the current input source, return false.

When the input source is a string from EVALUATE, return false and perform no other
action.

See: 7.6.2.2125 REFILL, 11.6.2.2125 REFILL, A.6.2.2125 REFILL.

6.2.2148 RESTORE-INPUT CORE EXT
(xn . . . x1 n -- flag)

Attempt to restore the input source specification to the state described by x1 through xn.
flag is true if the input source specification cannot be so restored.

An ambiguous condition exists if the input source represented by the arguments is not
the same as the current input source.

See: 15.6.2.1908 N>R, 15.6.2.1940 NR>, A.6.2.2182 SAVE-INPUT.

6.2.2150 ROLL CORE EXT
(xu xu-1 . . . x0 u -- xu-1 . . . x0 xu)

Remove u. Rotate u+1 items on the top of the stack. An ambiguous condition exists if
there are less than u+2 items on the stack before ROLL is executed.

See: A.6.2.2150 ROLL.

6.2.2266 S\" “s-backslash-quote” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc〈quote〉” --)
Parse ccc delimited by " (double-quote), using the translation rules below. Append the
run-time semantics given below to the current definition.

Translation rules: Characters are processed one at a time and appended to the compiled string. If the char-
acter is a ‘\’ character it is processed by parsing and substituting one or more
characters as follows, where the character after the backslash is case sensitive:

\a BEL (alert, ASCII 7)
\b BS (backspace, ASCII 8)
\e ESC (escape, ASCII 27)
\f FF (form feed, ASCII 12)
\l LF (line feed, ASCII 10)
\m CR/LF pair (ASCII 13, 10)
\n newline (implementation dependent , e.g., CR/LF, CR, LF, LF/CR)
\q double-quote (ASCII 34)

78 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

\r CR (carriage return, ASCII 13)
\t HT (horizontal tab, ASCII 9)
\v VT (vertical tab, ASCII 11)
\z NUL (no character, ASCII 0)
\" double-quote (ASCII 34)
\x〈hexdigit〉〈hexdigit〉

The resulting character is the conversion of these two hexadecimal
digits. An ambiguous conditions exists if \x is not followed by two
hexadecimal characters.

\\ backslash itself (ASCII 92)

An ambiguous condition exists if a \ is placed before any character, other than those
defined in here.

Run-time: (-- c-addr u)
Return c-addr and u describing a string consisting of the translation of the characters
ccc. A program shall not alter the returned string.

See: 3.4.1 Parsing, 6.2.0855 C", 11.6.1.2165 S", A.6.1.2165 S".

6.2.2182 SAVE-INPUT CORE EXT
(-- xn . . . x1 n)

x1 through xn describe the current state of the input source specification for later use by
RESTORE-INPUT.

See: 15.6.2.1908 N>R, 15.6.2.1940 NR>, A.6.2.2182 SAVE-INPUT.

6.2.2218 SOURCE-ID “source-i-d” CORE EXT
(-- 0 | -1)

Identifies the input source as follows:

SOURCE-ID Input source
-1 String (via EVALUATE)
0 User input device

See: 11.6.1.2218 SOURCE-ID.

6.2.2295 TO CORE EXT
Interpretation: (i×x “〈spaces〉name” --)

Skip leading spaces and parse name delimited by a space. Perform the “TO name run-
time” semantics given in the definition for the defining word of name. An ambiguous
condition exists if name was not defined by a word with “TO name run-time” semantics.

Compilation: (“〈spaces〉name” --)

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 79

6. CORE Word Set Forth 2012 RC1

Skip leading spaces and parse name delimited by a space. Append the “TO name run-
time” semantics given in the definition for the defining word of name to the current
definition. An ambiguous condition exists if name was not defined by a word with “TO
name run-time” semantics.

Run-time: (--)

Note: An ambiguous condition exists if any of POSTPONE, [COMPILE], ’ or [’] are applied
to TO.

See: 6.2.2405 VALUE, 8.6.2.0435 2VALUE, 12.6.2.1628 FVALUE, 13.6.1.0086 (LOCAL),
A.6.295.0 TO.

6.2.2298 TRUE CORE EXT
(-- true)

Return a true flag, a single-cell value with all bits set.

See: 3.1.3.1 Flags, A.6.298.0 TRUE.

6.2.2300 TUCK CORE EXT
(x1 x2 -- x2 x1 x2)

Copy the first (top) stack item below the second stack item.

6.2.2330 U.R “u-dot-r” CORE EXT
(u n --)

Display u right aligned in a field n characters wide. If the number of characters required
to display u is greater than n, all digits are displayed with no leading spaces in a field as
wide as necessary.

6.2.2350 U> “u-greater-than” CORE EXT
(u1 u2 -- flag)

flag is true if and only if u1 is greater than u2.

See: 6.1.0540 >.

6.2.2395 UNUSED CORE EXT
(-- u)

u is the amount of space remaining in the region addressed by HERE, in address units.

80 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 6. CORE Word Set

6.2.2405 VALUE CORE EXT
(x “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value equal to x.

name is referred to as a “value”.

name Execution: (-- x)

Place x on the stack. The value of x is that given when name was created, until the phrase
x TO name is executed, causing a new value of x to be assigned to name.

TO name Run-time: (x --)

Assign the value x to name.

See: 3.4.1 Parsing, 6.2.2295 TO, A.6.2.2405 VALUE.

6.2.2440 WITHIN CORE EXT
(n1 | u1 n2 | u2 n3 | u3 -- flag)

Perform a comparison of a test value n1 | u1 with a lower limit n2 | u2 and an upper limit
n3 | u3, returning true if either (n2 | u2 < n3 | u3 and (n2 | u2 <= n1 | u1 and n1 | u1 < n3 | u3))
or (n2 | u2 > n3 | u3 and (n2 | u2 <= n1 | u1 or n1 | u1 < n3 | u3)) is true, returning false
otherwise. An ambiguous condition exists n1 | u1, n2 | u2, and n3 | u3 are not all the same
type.

See: A.6.2.2440 WITHIN.

6.2.2530 [COMPILE] “bracket-compile” CORE EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name. If name has
other than default compilation semantics, append them to the current definition; other-
wise append the execution semantics of name. An ambiguous condition exists if name is
not found.

See: 3.4.1 Parsing, A.6.2.2530 [COMPILE].

6.2.2535 \ “backslash” CORE EXT
Compilation: Perform the execution semantics given below.

Execution: (“ccc〈eol〉” --)

Parse and discard the remainder of the parse area. \ is an immediate word.

See: 7.6.2.2535 \, A.6.2.2535 \.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 81

7. BLOCK Word Set Forth 2012 RC1

7 The optional Block word set

7.1 Introduction

7.2 Additional terms
block: 1024 characters of data on mass storage, designated by a block number.

block buffer: A block-sized region of data space where a block is made temporarily available for use. The
current block buffer is the block buffer most recently accessed by BLOCK, BUFFER, LOAD, LIST,
or THRU.

7.3 Additional usage requirements

7.3.1 Data space

A program may access memory within a valid block buffer.

See: 3.3.3 Data space.

7.3.2 Block buffer regions

The address of a block buffer returned by BLOCK or BUFFER is transient. A call to BLOCK or BUFFER
may render a previously-obtained block-buffer address invalid, as may a call to any word that:

– parses:

– displays characters on the user output device, such as TYPE or EMIT;

– controls the user output device, such as CR or AT-XY;

– receives or tests for the presence of characters from the user input device such as ACCEPT or KEY;

– waits for a condition or event, such as MS or EKEY;

– manages the block buffers, such as FLUSH, SAVE-BUFFERS, or EMPTY-BUFFERS;

– performs any operation on a file or file-name directory that implies I/O, such as REFILL or any word
that returns an ior;

– implicitly performs I/O, such as text interpreter nesting and un-nesting when files are being used
(including un-nesting implied by THROW).

If the input source is a block, these restrictions also apply to the address returned by SOURCE. Block buffers
are uniquely assigned to blocks.

See A.7.3.2 Block buffer regions.

7.3.3 Parsing

The Block word set implements an alternative input source for the text interpreter. When the input source
is a block, BLK shall contain the non-zero block number and the input buffer is the 1024-character buffer
containing that block.

82 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 7. BLOCK Word Set

A block is conventionally displayed as 16 lines of 64 characters.

A program may switch the input source to a block by using LOAD or THRU. Input sources may be nested
using LOAD and EVALUATE in any order.

A program may reposition the parse area within a block by manipulating >IN. More extensive repositioning
can be accomplished using SAVE-INPUT and RESTORE-INPUT.

See: 3.4.1 Parsing.

7.3.4 Possible action on an ambiguous condition

See: 3.4.4 Possible actions on an ambiguous condition.

– A system with the Block word set may set interpretation state and interpret a block.

7.4 Additional documentation requirements

7.4.1 System documentation

7.4.1.1 Implementation-defined options

– the format used for display by 7.6.2.1770 LIST (if implemented);

– the length of a line affected by 7.6.2.2535 \ (if implemented).

7.4.1.2 Ambiguous conditions

– Correct block read was not possible;

– I/O exception in block transfer;

– Invalid block number (7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1790 LOAD);

– A program directly alters the contents of 7.6.1.0790 BLK;

– No current block buffer for 7.6.1.2400 UPDATE.

7.4.1.3 Other system documentation

– any restrictions a multiprogramming system places on the use of buffer addresses;

– the number of blocks available for source text and data.

7.4.2 Program documentation

– the number of blocks required by the program.

7.5 Compliance and labeling

7.5.1 Forth-2012 systems

The phrase “Providing the Block word set” shall be appended to the label of any Standard System that
provides all of the Block word set.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 83

7. BLOCK Word Set Forth 2012 RC1

The phrase “Providing name(s) from the Block Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Block Extensions word set.

The phrase “Providing the Block Extensions word set” shall be appended to the label of any Standard
System that provides all of the Block and Block Extensions word sets.

7.5.2 Forth-2012 programs

The phrase “Requiring the Block word set” shall be appended to the label of Standard Programs that require
the system to provide the Block word set.

The phrase “Requiring name(s) from the Block Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Block Extensions word set.

The phrase “Requiring the Block Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Block and Block Extensions word sets.

7.6 Glossary

7.6.1 Block words

7.6.1.0790 BLK “b-l-k” BLOCK
(-- a-addr)

a-addr is the address of a cell containing zero or the number of the mass-storage block
being interpreted. If BLK contains zero, the input source is not a block and can be
identified by SOURCE-ID, if SOURCE-ID is available. An ambiguous condition exists
if a program directly alters the contents of BLK.

See: 7.3.2 Block buffer regions.

7.6.1.0800 BLOCK BLOCK
(u -- a-addr)

a-addr is the address of the first character of the block buffer assigned to mass-storage
block u. An ambiguous condition exists if u is not an available block number.

If block u is already in a block buffer, a-addr is the address of that block buffer.

If block u is not already in memory and there is an unassigned block buffer, transfer
block u from mass storage to an unassigned block buffer. a-addr is the address of that
block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign
a block buffer. If the block in that buffer has been UPDATEd, transfer the block to mass
storage and transfer block u from mass storage into that buffer. a-addr is the address of
that block buffer.

At the conclusion of the operation, the block buffer pointed to by a-addr is the current
block buffer and is assigned to u.

84 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 7. BLOCK Word Set

7.6.1.0820 BUFFER BLOCK
(u -- a-addr)

a-addr is the address of the first character of the block buffer assigned to block u. The
contents of the block are unspecified. An ambiguous condition exists if u is not an
available block number.

If block u is already in a block buffer, a-addr is the address of that block buffer.

If block u is not already in memory and there is an unassigned buffer, a-addr is the
address of that block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign
a block buffer. If the block in that buffer has been UPDATEd, transfer the block to mass
storage. a-addr is the address of that block buffer.

At the conclusion of the operation, the block buffer pointed to by a-addr is the current
block buffer and is assigned to u.

See: 7.6.1.0800 BLOCK.

7.6.1.1360 EVALUATE BLOCK
Extend the semantics of 6.1.1360 EVALUATE to include: Store zero in BLK.

7.6.1.1559 FLUSH BLOCK
(--)

Perform the function of SAVE-BUFFERS, then unassign all block buffers.

7.6.1.1790 LOAD BLOCK
(i×x u -- j×x)

Save the current input-source specification. Store u in BLK (thus making block u the
input source and setting the input buffer to encompass its contents), set >IN to zero, and
interpret. When the parse area is exhausted, restore the prior input source specification.
Other stack effects are due to the words LOADed.

An ambiguous condition exists if u is zero or is not a valid block number.

See: 3.4 The Forth text interpreter.

7.6.1.2180 SAVE-BUFFERS BLOCK
(--)

Transfer the contents of each UPDATEd block buffer to mass storage. Mark all buffers
as unmodified.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 85

7. BLOCK Word Set Forth 2012 RC1

7.6.1.2400 UPDATE BLOCK
(--)

Mark the current block buffer as modified. An ambiguous condition exists if there is no
current block buffer.

UPDATE does not immediately cause I/O.

See: 7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1559 FLUSH,
7.6.1.2180 SAVE-BUFFERS.

7.6.2 Block extension words

7.6.2.1330 EMPTY-BUFFERS BLOCK EXT
(--)

Unassign all block buffers. Do not transfer the contents of any UPDATEd block buffer to
mass storage.

See: 7.6.1.0800 BLOCK.

7.6.2.1770 LIST BLOCK EXT
(u --)

Display block u in an implementation-defined format. Store u in SCR.

See: 7.6.1.0800 BLOCK.

7.6.2.2125 REFILL BLOCK EXT
(-- flag)

Extend the execution semantics of 6.2.2125 REFILL with the following:

When the input source is a block, make the next block the input source and current input
buffer by adding one to the value of BLK and setting >IN to zero. Return true if the new
value of BLK is a valid block number, otherwise false.

See: 6.2.2125 REFILL, 11.6.2.2125 REFILL.

7.6.2.2190 SCR “s-c-r” BLOCK EXT
(-- a-addr)

a-addr is the address of a cell containing the block number of the block most recently
LISTed.

See: A.7.6.2.2190 SCR.

86 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 7. BLOCK Word Set

7.6.2.2280 THRU BLOCK EXT
(i×x u1 u2 -- j×x)

LOAD the mass storage blocks numbered u1 through u2 in sequence. Other stack effects
are due to the words LOADed.

7.6.2.2535 \ “backslash” BLOCK EXT
Extend the semantics of 6.2.2535 \ to be:

Compilation: Perform the execution semantics given below.

Execution: (“ccc〈eol〉” --)

If BLK contains zero, parse and discard the remainder of the parse area; otherwise parse
and discard the portion of the parse area corresponding to the remainder of the current
line. \ is an immediate word.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 87

8. DOUBLE Word Set Forth 2012 RC1

8 The optional Double-Number word set

8.1 Introduction
Sixteen-bit Forth systems often use double-length numbers. However, many Forths on small embedded
systems do not, and many users of Forth on systems with a cell size of 32 bits or more find that the use of
double-length numbers is much diminished. Therefore, the words that manipulate double-length entities
have been placed in this optional word set.

8.2 Additional terms and notation
None.

8.3 Additional usage requirements

8.3.1 Text interpreter input number conversion

When the text interpreter processes a number, except a 〈cnum〉, that is immediately followed by a decimal
point and is not found as a definition name, the text interpreter shall convert it to a double-cell number.

For example, entering DECIMAL 1234 leaves the single-cell number 1234 on the stack, and entering
DECIMAL 1234. leaves the double-cell number 1234 0 on the stack.

See: 3.4.1.3 Text interpreter input number conversion.

8.4 Additional documentation requirements

8.4.1 System documentation

8.4.1.1 Implementation-defined options

– no additional requirements.

8.4.1.2 Ambiguous conditions

– d outside range of n in 8.6.1.1140 D>S.

8.4.1.3 Other system documentation

– no additional requirements.

8.4.2 Program documentation

– no additional requirements.

8.5 Compliance and labeling

8.5.1 Forth-2012 systems

The phrase “Providing the Double-Number word set” shall be appended to the label of any Standard System
that provides all of the Double-Number word set.

88 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 8. DOUBLE Word Set

The phrase “Providing name(s) from the Double-Number Extensions word set” shall be appended to the
label of any Standard System that provides portions of the Double-Number Extensions word set.

The phrase “Providing the Double-Number Extensions word set” shall be appended to the label of any
Standard System that provides all of the Double-Number and Double-Number Extensions word sets.

8.5.2 Forth-2012 programs

The phrase “Requiring the Double-Number word set” shall be appended to the label of Standard Programs
that require the system to provide the Double-Number word set.

The phrase “Requiring name(s) from the Double-Number Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Double-Number Extensions
word set.

The phrase “Requiring the Double-Number Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Double-Number and Double-Number Extensions
word sets.

8.6 Glossary

8.6.1 Double-Number words

8.6.1.0360 2CONSTANT “two-constant” DOUBLE
(x1 x2 “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name is referred to as a “two-constant”.

name Execution: (-- x1 x2)

Place cell pair x1 x2 on the stack.

See: 3.4.1 Parsing, A.8.6.1.0360 2CONSTANT.

8.6.1.0390 2LITERAL “two-literal” DOUBLE
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (x1 x2 --)

Append the run-time semantics below to the current definition.

Run-time: (-- x1 x2)

Place cell pair x1 x2 on the stack.

See: A.8.6.1.0390 2LITERAL.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 89

8. DOUBLE Word Set Forth 2012 RC1

8.6.1.0440 2VARIABLE “two-variable” DOUBLE
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve two consecutive cells of data
space.

name is referred to as a “two-variable”.

name Execution: (-- a-addr)

a-addr is the address of the first (lowest address) cell of two consecutive cells in data
space reserved by 2VARIABLE when it defined name. A program is responsible for
initializing the contents.

See: 3.4.1 Parsing, 6.1.2410 VARIABLE, A.8.6.1.0440 2VARIABLE.

8.6.1.1040 D+ “d-plus” DOUBLE
(d1 | ud1 d2 | ud2 -- d3 | ud3)

Add d2 | ud2 to d1 | ud1, giving the sum d3 | ud3.

8.6.1.1050 D- “d-minus” DOUBLE
(d1 | ud1 d2 | ud2 -- d3 | ud3)

Subtract d2 | ud2 from d1 | ud1, giving the difference d3 | ud3.

8.6.1.1060 D. “d-dot” DOUBLE
(d --)

Display d in free field format.

8.6.1.1070 D.R “d-dot-r” DOUBLE
(d n --)

Display d right aligned in a field n characters wide. If the number of characters required
to display d is greater than n, all digits are displayed with no leading spaces in a field as
wide as necessary.

See: A.8.6.1.1070 D.R.

8.6.1.1075 D0< “d-zero-less” DOUBLE
(d -- flag)

flag is true if and only if d is less than zero.

90 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 8. DOUBLE Word Set

8.6.1.1080 D0= “d-zero-equals” DOUBLE
(xd -- flag)

flag is true if and only if xd is equal to zero.

8.6.1.1090 D2* “d-two-star” DOUBLE
(xd1 -- xd2)

xd2 is the result of shifting xd1 one bit toward the most-significant bit, filling the vacated
least-significant bit with zero.

See: [rat:core:2*] .

8.6.1.1100 D2/ “d-two-slash” DOUBLE
(xd1 -- xd2)

xd2 is the result of shifting xd1 one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

See: [rat:core:2/] .

8.6.1.1110 D< “d-less-than” DOUBLE
(d1 d2 -- flag)

flag is true if and only if d1 is less than d2.

8.6.1.1120 D= “d-equals” DOUBLE
(xd1 xd2 -- flag)

flag is true if and only if xd1 is bit-for-bit the same as xd2.

8.6.1.1140 D>S “d-to-s” DOUBLE
(d -- n)

n is the equivalent of d. An ambiguous condition exists if d lies outside the range of a
signed single-cell number.

See: A.8.6.140.0 D>S.

8.6.1.1160 DABS “d-abs” DOUBLE
(d -- ud)

ud is the absolute value of d.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 91

8. DOUBLE Word Set Forth 2012 RC1

8.6.1.1210 DMAX “d-max” DOUBLE
(d1 d2 -- d3)

d3 is the greater of d1 and d2.

8.6.1.1220 DMIN “d-min” DOUBLE
(d1 d2 -- d3)

d3 is the lesser of d1 and d2.

8.6.1.1230 DNEGATE “d-negate” DOUBLE
(d1 -- d2)

d2 is the negation of d1.

8.6.1.1820 M*/ “m-star-slash” DOUBLE
(d1 n1 +n2 -- d2)

Multiply d1 by n1 producing the triple-cell intermediate result t. Divide t by +n2 giving
the double-cell quotient d2. An ambiguous condition exists if +n2 is zero or negative, or
the quotient lies outside of the range of a double-precision signed integer.

See: A.8.6.1.1820 M*/.

8.6.1.1830 M+ “m-plus” DOUBLE
(d1 | ud1 n -- d2 | ud2)

Add n to d1 | ud1, giving the sum d2 | ud2.

See: A.8.6.1.1830 M+.

8.6.2 Double-Number extension words

8.6.2.0420 2ROT “two-rote” DOUBLE EXT
(x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)

Rotate the top three cell pairs on the stack bringing cell pair x1 x2 to the top of the stack.

8.6.2.0435 2VALUE “two-value” DOUBLE EXT
(x1 x2 “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value of x1 x2.

name is referred to as a “two-value”.

92 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 8. DOUBLE Word Set

name Execution: (-- x1 x2)

Place cell pair x1 x2 on the stack. The value of x1 x2 is that given when name was created,
until the phrase “x1 x2 TO name” is executed, causing a new cell pair x1 x2 to be assigned
to name.

TO name Run-time: (x1 x2 --)

Assign the cell pair x1 x2 to name.

See: 3.4.1 Parsing and 6.2.2295 TO, A.8.6.2.0435 2VALUE.

8.6.2.1270 DU< “d-u-less” DOUBLE EXT
(ud1 ud2 -- flag)

flag is true if and only if ud1 is less than ud2.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 93

9. EXCEPTION Word Set Forth 2012 RC1

9 The optional Exception word set

9.1 Introduction

9.2 Additional terms and notation
None.

9.3 Additional usage requirements

9.3.1 THROW values

The THROW values {-255. . . -1} shall be used only as assigned by this Standard. The values {-4095. . . -256}
shall be used only as assigned by a system.

If the File-Access or Memory-Allocation word sets are implemented, it is recommended that the non-zero
values of ior lie within the range of system THROW values, as defined above. In an operating-system
environment, this can sometimes be accomplished by “biasing” the range of operating-system exception
codes to fall within the THROW range.

Programs shall not define values for use with THROW in the range {-4095. . . -1}.

9.3.2 Exception frame

An exception frame is the implementation-dependent set of information recording the current execution
state necessary for the proper functioning of CATCH and THROW. It often includes the depths of the data
stack and return stack.

9.3.3 Exception stack

A stack used for the nesting of exception frames by CATCH and THROW. It may be, but need not be,
implemented using the return stack.

9.3.4 Possible actions on an ambiguous condition

A system choosing to execute THROW when detecting one of the ambiguous conditions listed in table 9.1
shall use the throw code listed there.

See: 3.4.4 Possible actions on an ambiguous condition.

9.3.5 Exception handling

There are several methods of coupling CATCH and THROW to other procedural nestings. The usual nestings
are the execution of definitions, use of the return stack, use of loops, instantiation of locals and nesting of
input sources (i.e., with LOAD, EVALUATE, or INCLUDE-FILE).

When a THROW returns control to a CATCH, the system shall un-nest not only definitions, but also, if
present, locals and input source specifications, to return the system to its proper state for continued execu-
tion past the CATCH.

94 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 9. EXCEPTION Word Set

Table 9.1: THROW code assignments
Code Reserved for Code Reserved for

-1 ABORT
-2 ABORT"
-3 stack overflow
-4 tack underflow
-5 return stack overflow
-6 return stack underflow
-7 do-loops nested too deeply during execution
-8 dictionary overflow
-9 invalid memory address

-10 division by zero
-11 result out of range
-12 argument type mismatch
-13 undefined word
-14 interpreting a compile-only word
-15 invalid FORGET
-16 attempt to use zero-length string as a name
-17 pictured numeric output string overflow
-18 parsed string overflow
-19 definition name too long
-20 write to a read-only location
-21 unsupported operation

(e.g., AT-XY on a too-dumb terminal)
-22 control structure mismatch
-23 address alignment exception
-24 invalid numeric argument
-25 return stack imbalance
-26 loop parameters unavailable
-27 invalid recursion
-28 user interrupt
-29 compiler nesting
-30 obsolescent feature
-31 >BODY used on non-CREATEd definition
-32 invalid name argument (e.g., TO name)
-33 block read exception
-34 block write exception
-35 invalid block number
-36 invalid file position
-37 file I/O exception
-38 non-existent file
-39 unexpected end of file

-40 invalid BASE for floating point conversion
-41 loss of precision
-42 floating-point divide by zero
-43 floating-point result out of range
-44 floating-point stack overflow
-45 floating-point stack underflow
-46 floating-point invalid argument
-47 compilation word list deleted
-48 invalid POSTPONE
-49 search-order overflow
-50 search-order underflow
-51 compilation word list changed
-52 control-flow stack overflow
-53 exception stack overflow
-54 floating-point underflow
-55 floating-point unidentified fault
-56 QUIT
-57 exception in sending or receiving a character
-58 [IF], [ELSE], or [THEN] exception
-59 ALLOCATE
-60 FREE
-61 RESIZE
-62 CLOSE-FILE
-63 CREATE-FILE
-64 DELETE-FILE
-65 FILE-POSITION
-66 FILE-SIZE
-67 FILE-STATUS
-68 FLUSH-FILE
-69 OPEN-FILE
-70 READ-FILE
-71 READ-LINE
-72 RENAME-FILE
-73 REPOSITION-FILE
-74 RESIZE-FILE
-75 WRITE-FILE
-76 WRITE-LINE
-77 Malformed xchar
-78 SUBSTITUTE
-79 REPLACES

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 95

9. EXCEPTION Word Set Forth 2012 RC1

9.4 Additional documentation requirements

9.4.1 System documentation

9.4.1.1 Implementation-defined options

– Values used in the system by 9.6.1.0875 CATCH and 9.6.1.2275 THROW (9.3.1 THROW values,
9.3.4 Possible actions on an ambiguous condition).

9.4.1.2 Ambiguous conditions

– no additional requirements.

9.4.1.3 Other system documentation

– no additional requirements.

9.4.2 Program documentation

– no additional requirements.

9.5 Compliance and labeling

9.5.1 Forth-2012 systems

The phrase “Providing the Exception word set” shall be appended to the label of any Standard System that
provides all of the Exception word set.

The phrase “Providing name(s) from the Exception Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Exception Extensions word set.

The phrase “Providing the Exception Extensions word set” shall be appended to the label of any Standard
System that provides all of the Exception and Exception Extensions word sets.

9.5.2 Forth-2012 programs

The phrase “Requiring the Exception word set” shall be appended to the label of Standard Programs that
require the system to provide the Exception word set.

The phrase “Requiring name(s) from the Exception Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Exception Extensions word set.

The phrase “Requiring the Exception Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Exception and Exception Extensions word sets.

9.6 Glossary

9.6.1 Exception words

96 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 9. EXCEPTION Word Set

9.6.1.0875 CATCH EXCEPTION
(i×x xt -- j×x 0 | i×x n)

Push an exception frame on the exception stack and then execute the execution token xt
(as with EXECUTE) in such a way that control can be transferred to a point just after
CATCH if THROW is executed during the execution of xt.

If the execution of xt completes normally (i.e., the exception frame pushed by this CATCH
is not popped by an execution of THROW) pop the exception frame and return zero on top
of the data stack, above whatever stack items would have been returned by xt EXECUTE.
Otherwise, the remainder of the execution semantics are given by THROW.

See: A.9.6.175.0 THROW.

9.6.1.2275 THROW EXCEPTION
(k×x n -- k×x | i×x n)

If any bits of n are non-zero, pop the topmost exception frame from the exception stack,
along with everything on the return stack above that frame. Then restore the input source
specification in use before the corresponding CATCH and adjust the depths of all stacks
defined by this Standard so that they are the same as the depths saved in the exception
frame (i is the same number as the i in the input arguments to the corresponding CATCH),
put n on top of the data stack, and transfer control to a point just after the CATCH that
pushed that exception frame.

If the top of the stack is non zero and there is no exception frame on the exception stack,
the behavior is as follows:

If n is minus-one (-1), perform the function of 6.1.0670 ABORT (the version of ABORT
in the Core word set), displaying no message.

If n is minus-two, perform the function of 6.1.0680 ABORT" (the version of ABORT"
in the Core word set), displaying the characters ccc associated with the ABORT" that
generated the THROW.

Otherwise, the system may display an implementation-dependent message giving infor-
mation about the condition associated with the THROW code n. Subsequently, the system
shall perform the function of 6.1.0670 ABORT (the version of ABORT in the Core word
set).

See: A.9.6.175.0 THROW.

9.6.2 Exception extension words

9.6.2.0670 ABORT EXCEPTION EXT
Extend the semantics of 6.1.0670 ABORT to be:

(i×x --) (R: j×x --)

Perform the function of -1 THROW.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 97

9. EXCEPTION Word Set Forth 2012 RC1

See: 6.1.0670 ABORT.

9.6.2.0680 ABORT" “abort-quote” EXCEPTION EXT
Extend the semantics of 6.1.0680 ABORT" to be:

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“ccc〈quote〉” --)

Parse ccc delimited by a " (double-quote). Append the run-time semantics given below
to the current definition.

Run-time: (i×x x1 -- | i×x) (R: j×x -- | j×x)

Remove x1 from the stack. If any bit of x1 is not zero, perform the function of -2 THROW,
displaying ccc if there is no exception frame on the exception stack.

See: 3.4.1 Parsing, 6.1.0680 ABORT".

98 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 10. FACILITY Word Set

10 The optional Facility word set

10.1 Introduction

10.2 Additional terms and notation
None.

10.3 Additional usage requirements

10.3.1 Data types

Append table 10.1 to table 3.1.

Table 10.1: Data types
Symbol Data type Size on stack
struct-sys data structures implementation dependent

10.3.1.1 Structure type

The implementation-dependent data generated upon beginning to compile a BEGIN-STRUCTURE . . .
END-STRUCTURE structure and consumed at its close is represented by the symbol struct-sys throughout
this Standard.

10.3.1.2 Character types

Programs that use more than seven bits of a character by EKEY have an environmental dependency.

See: 3.1.2 Character types.

10.4 Additional documentation requirements

10.4.1 System documentation

10.4.1.1 Implementation-defined options

– encoding of keyboard events 10.6.2.1305 EKEY);

– duration of a system clock tick;

– repeatability to be expected from execution of 10.6.2.1905 MS.

10.4.1.2 Ambiguous conditions

– 10.6.1.0742 AT-XY operation can’t be performed on user output device.

– A name defined by 10.6.2.0763 BEGIN-STRUCTURE is executed before the corresponding
10.6.2.1336 END-STRUCTURE has been executed.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 99

10. FACILITY Word Set Forth 2012 RC1

10.4.1.3 Other system documentation

– no additional requirements.

10.4.2 Program documentation

10.4.2.1 Environmental dependencies

– using more than seven bits of a character in 10.6.2.1305 EKEY.

10.4.2.2 Other program documentation

– no additional requirements.

10.5 Compliance and labeling

10.5.1 Forth-2012 systems

The phrase “Providing the Facility word set” shall be appended to the label of any Standard System that
provides all of the Facility word set.

The phrase “Providing name(s) from the Facility Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Facility Extensions word set.

The phrase “Providing the Facility Extensions word set” shall be appended to the label of any Standard
System that provides all of the Facility and Facility Extensions word sets.

10.5.2 Forth-2012 programs

The phrase “Requiring the Facility word set” shall be appended to the label of Standard Programs that
require the system to provide the Facility word set.

The phrase “Requiring name(s) from the Facility Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Facility Extensions word set.

The phrase “Requiring the Facility Extensions word set” shall be appended to the label of Standard Pro-
grams that require the system to provide all of the Facility and Facility Extensions word sets.

10.6 Glossary

10.6.1 Facility words

10.6.1.0742 AT-XY “at-x-y” FACILITY
(u1 u2 --)

Perform implementation-dependent steps so that the next character displayed will appear
in column u1, row u2 of the user output device, the upper left corner of which is column
zero, row zero. An ambiguous condition exists if the operation cannot be performed on
the user output device with the specified parameters.

100 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 10. FACILITY Word Set

10.6.1.1755 KEY? “key-question” FACILITY
(-- flag)

If a character is available, return true. Otherwise, return false. If non-character keyboard
events are available before the first valid character, they are discarded and are subse-
quently unavailable. The character shall be returned by the next execution of KEY.

After KEY? returns with a value of true, subsequent executions of KEY? prior to the
execution of KEY or EKEY also return true, without discarding keyboard events.

See: A.10.6.1.1755 KEY?.

10.6.1.2005 PAGE FACILITY
(--)

Move to another page for output. Actual function depends on the output device. On a
terminal, PAGE clears the screen and resets the cursor position to the upper left corner.
On a printer, PAGE performs a form feed.

10.6.2 Facility extension words

10.6.2.0135 +FIELD “plus-field” FACILITY EXT
(n1 n2 “〈spaces〉name” -- n3)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Return n3 = n1 + n2 where n1 is the
offset in the data structure before +FIELD executes, and n2 is the size of the data to be
added to the data structure. n1 and n2 are in address units.

name Execution: (addr1 -- addr2)

Add n1 to addr1 giving addr2.

See: 10.6.2.0763 BEGIN-STRUCTURE, 10.6.2.1336 END-STRUCTURE,
10.6.2.0893 CFIELD:, 10.6.2.1518 FIELD:, 12.6.2.1517 FFIELD:,
12.6.2.2206.40 SFFIELD:, 12.6.2.1207.40 DFFIELD:, A.10.6.2.0135 +FIELD.

10.6.2.0763 BEGIN-STRUCTURE FACILITY EXT
(“〈spaces〉name” -- struct-sys 0)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Return a struct-sys (zero or more
implementation dependent items) that will be used by END-STRUCTURE and an initial
offset of 0.

name Execution: (-- +n)

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 101

10. FACILITY Word Set Forth 2012 RC1

+n is the size in memory expressed in address units of the data structure. An ambiguous
condition exists if name is executed prior to the associated END-STRUCTURE being
executed.

See: 10.6.2.0135 +FIELD, 10.6.2.1336 END-STRUCTURE,
A.10.6.2.0763 BEGIN-STRUCTURE.

10.6.2.0893 CFIELD: “c-field-colon” FACILITY EXT
(n1 “〈spaces〉name” -- n2)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first char-
acter aligned value greater than or equal to n1. n2 = offset + 1 character.

Create a definition for name with the execution semantics given below.

name Execution: (addr1 -- addr2)

Add the offset calculated during the compile time action to addr1 giving the character
aligned address addr2.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

10.6.2.1305 EKEY “e-key” FACILITY EXT
(-- x)

Receive one keyboard event x. The encoding of keyboard events is implementation de-
fined.

See: 6.1.1750 KEY, 10.6.1.1755 KEY?, A.10.6.2.1305 EKEY.

10.6.2.1306 EKEY>CHAR “e-key-to-char” FACILITY EXT
(x -- x false | char true)

If the keyboard event x corresponds to a character in the implementation-defined charac-
ter set, return that character and true. Otherwise return x and false.

See: A.10.6.2.1306 EKEY>CHAR.

10.6.2.1306.40 EKEY>FKEY “e-key-to-f-key” FACILITY EXT
(x -- u flag)

If the keyboard event x corresponds to a keypress in the implementation-defined special
key set, return that key’s id u and true. Otherwise return x and false.

Note: The keyboard may lack some of the keys, or the capability to report them. Programs
should be written such that they also work (although less conveniently or with less func-
tionality) if these key numbers cannot be produced.

102 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 10. FACILITY Word Set

See: 10.6.2.1305 EKEY, 10.6.2.1740.01 K-ALT-MASK, 10.6.2.1740.02 K-CTRL-MASK,
10.6.2.1740.03 K-DELETE, 10.6.2.1740.04 K-DOWN, 10.6.2.1740.05 K-END,
10.6.2.1740.06 K-F1, 10.6.2.1740.07 K-F10, 10.6.2.1740.08 K-F11,
10.6.2.1740.09 K-F12, 10.6.2.1740.10 K-F2, 10.6.2.1740.11 K-F3,
10.6.2.1740.12 K-F4, 10.6.2.1740.13 K-F5, 10.6.2.1740.14 K-F6,
10.6.2.1740.15 K-F7, 10.6.2.1740.16 K-F8, 10.6.2.1740.17 K-F9,
10.6.2.1740.18 K-HOME, 10.6.2.1740.19 K-INSERT, 10.6.2.1740.20 K-LEFT,
10.6.2.1740.21 K-NEXT, 10.6.2.1740.22 K-PRIOR, 10.6.2.1740.23 K-RIGHT,
10.6.2.1740.24 K-SHIFT-MASK, 10.6.2.1740.25 K-UP,
A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1307 EKEY? “e-key-question” FACILITY EXT
(-- flag)

If a keyboard event is available, return true. Otherwise return false. The event shall be
returned by the next execution of EKEY.

After EKEY? returns with a value of true, subsequent executions of EKEY? prior to the
execution of KEY, KEY? or EKEY also return true, referring to the same event.

10.6.2.1325 EMIT? “emit-question” FACILITY EXT
(-- flag)

flag is true if the user output device is ready to accept data and the execution of EMIT
in place of EMIT? would not have suffered an indefinite delay. If the device status is
indeterminate, flag is true.

See: A.10.6.2.1325 EMIT?.

10.6.2.1336 END-STRUCTURE FACILITY EXT
(struct-sys +n --)

Terminate definition of a structure started by BEGIN-STRUCTURE.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE.

10.6.2.1518 FIELD: “field-colon” FACILITY EXT
(n1 “〈spaces〉name” -- n2)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first cell
aligned value greater than or equal to n1. n2 = offset + 1 cell.

Create a definition for name with the execution semantics given below.

name Execution: (addr1 -- addr2)

Add the offset calculated during the compile time action to addr1 giving the cell aligned
address addr2.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 103

10. FACILITY Word Set Forth 2012 RC1

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

10.6.2.1740.01 K-ALT-MASK FACILITY EXT
(-- u)

Mask for the ALT key, that can be ORed with the key value to produce a value that the
sequence EKEY EKEY>FKEY may produce when the user presses the corresponding key
combination.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.02 K-CTRL-MASK FACILITY EXT
(-- u)

Mask for the CTRL key, that can be ORed with the key value to produce a value that the
sequence EKEY EKEY>FKEY may produce when the user presses the corresponding key
combination.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.03 K-DELETE FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “Delete” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.04 K-DOWN FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor down” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.05 K-END FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “End” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

104 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 10. FACILITY Word Set

10.6.2.1740.06 K-F1 “k-f-1” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F1” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.07 K-F10 “k-f-10” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F10” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.08 K-F11 “k-f-11” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F11” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.09 K-F12 “k-f-12” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F12” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.10 K-F2 “k-f-2” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F2” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.11 K-F3 “k-f-3” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F3” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 105

10. FACILITY Word Set Forth 2012 RC1

10.6.2.1740.12 K-F4 “k-f-4” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F4” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.13 K-F5 “k-f-5” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F5” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.14 K-F6 “k-f-6” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F6” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.15 K-F7 “k-f-7” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F7” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.16 K-F8 “k-f-8” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F8” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.17 K-F9 “k-f-9” FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “F9” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

106 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 10. FACILITY Word Set

10.6.2.1740.18 K-HOME FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “home” or “Pos1” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.19 K-INSERT FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “Insert” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.20 K-LEFT FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor left” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.21 K-NEXT FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “PgDn” (Page Down) or “Next” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.22 K-PRIOR FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “PgUp” (Page Up) or “Prior” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.23 K-RIGHT FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor right” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 107

10. FACILITY Word Set Forth 2012 RC1

10.6.2.1740.24 K-SHIFT-MASK FACILITY EXT
(-- u)

Mask for the SHIFT key, that can be ORed with the key value to produce a value that the
sequence EKEY EKEY>FKEY may produce when the user presses the corresponding key
combination.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1740.25 K-UP FACILITY EXT
(-- u)

Leaves the value u that the sequence EKEY EKEY>FKEY would produce when the user
presses the “cursor up” key.

See: 10.6.2.1306.40 EKEY>FKEY, A.10.6.2.1306.40 EKEY>FKEY.

10.6.2.1905 MS FACILITY EXT
(u --)

Wait at least u milliseconds.

Note: The actual length and variability of the time period depends upon the implementation-de-
fined resolution of the system clock and upon other system and computer characteristics
beyond the scope of this Standard.

See: A.10.6.2.1905 MS.

10.6.2.2292 TIME&DATE “time-and-date” FACILITY EXT
(-- +n1 +n2 +n3 +n4 +n5 +n6)

Return the current time and date. +n1 is the second {0. . . 59}, +n2 is the minute {0. . . 59},
+n3 is the hour {0. . . 23}, +n4 is the day {1. . . 31}, +n5 is the month {1. . . 12} and +n6 is
the year (e.g., 1991).

See: A.10.6.292.0 TIME&DATE.

108 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 11. FILE Word Set

11 The optional File-Access word set

11.1 Introduction
These words provide access to mass storage in the form of “files” under the following assumptions:

– files are provided by a host operating system;

– file names are represented as character strings;

– the format of file names is determined by the host operating system;

– an open file is identified by a single-cell file identifier (fileid);

– file-state information (e.g., position, size) is managed by the host operating system;

– file contents are accessed as a sequence of characters;

– file read operations return an actual transfer count, which can differ from the requested transfer count.

11.2 Additional terms
file-access method: A permissible means of accessing a file, such as “read/write” or “read only”.

file position: The character offset from the start of the file.

input file: The file, containing a sequence of lines, that is the input source.

11.3 Additional usage requirements

11.3.1 Data types

Append table 11.1 to table 3.1.

Table 11.1: Data types
Symbol Data type Size on stack
ior I/O results 1 cell
fam file access method 1 cell
fileid file identifier 1 cell

11.3.1.1 File identifiers

File identifiers are implementation-dependent single-cell values that are passed to file operators to designate
specific files. Opening a file assigns a file identifier, which remains valid until closed.

11.3.1.2 I/O results

I/O results are single-cell numbers indicating the result of I/O operations. A value of zero indicates that
the I/O operation completed successfully; other values and their meanings are implementation-defined.
Reaching the end of a file shall be reported as zero.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 109

11. FILE Word Set Forth 2012 RC1

An I/O exception in the execution of a File-Access word that can return an I/O result shall not cause a
THROW; exception indications are returned in the ior.

11.3.1.3 File access methods

File access methods are implementation-defined single-cell values.

11.3.1.4 File names

A character string containing the name of the file. The file name may include an implementation-dependent
path name. The format of file names is implementation defined.

11.3.2 Blocks in files

If the File-Access word set is implemented, the Block word set shall be implemented. Blocks may, but
need not, reside in files. When they do:

– Block numbers may be mapped to one or more files by implementation-defined means. An ambigu-
ous condition exists if a requested block number is not currently mapped;

– An UPDATEd block that came from a file shall be transferred back to the same file.

11.3.3 Input source

The File-Access word set creates another input source for the text interpreter. When the input source is a
text file, BLK shall contain zero, SOURCE-ID shall contain the fileid of that text file, and the input buffer
shall contain one line of the text file. During text interpretation from a text file, the value returned by
FILE-POSITION for the fileid returned by SOURCE-ID is undefined. A standard program shall not call
REPOSITION-FILE on the fileid returned by SOURCE-ID.

Input with INCLUDED, INCLUDE-FILE, LOAD and EVALUATE shall be nestable in any order to at least
eight levels.

A program that uses more than eight levels of input-file nesting has an environmental dependency. See:
3.3.3.5 Input buffers, 9 The optional Exception word set.

11.3.4 Other transient regions

The list of words using memory in transient regions is extended to include 11.6.1.2165 S". See: 3.3.3.6
Other transient regions.

11.3.5 Parsing

When parsing from a text file using a space delimiter, control characters shall be treated the same as the
space character.

Lines of at least 128 characters shall be supported. A program that requires lines of more than 128 charac-
ters has an environmental dependency.

A program may reposition the parse area within the input buffer by manipulating the contents of >IN.
More extensive repositioning can be accomplished using SAVE-INPUT and RESTORE-INPUT.

See: 3.4.1 Parsing.

110 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 11. FILE Word Set

11.4 Additional documentation requirements

11.4.1 System documentation

11.4.1.1 Implementation-defined options

– file access methods used by 11.6.1.0765 BIN, 11.6.1.1010 CREATE-FILE,
11.6.1.1970 OPEN-FILE, 11.6.1.2054 R/O, 11.6.1.2056 R/W and 11.6.1.2425 W/O;

– file exceptions;

– file line terminator (11.6.1.2090 READ-LINE);

– file name format (11.3.1.4 File names);

– information returned by 11.6.2.1524 FILE-STATUS;

– input file state after an exception (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED);

– ior values and meaning (11.3.1.2 I/O results);

– maximum depth of file input nesting (11.3.3 Input source);

– maximum size of input line (11.3.5 Parsing);

– methods for mapping block ranges to files (11.3.2 Blocks in files);

– number of string buffers provided (11.6.1.2165 S");

– size of string buffer used by 11.6.1.2165 S".

11.4.1.2 Ambiguous conditions

– attempting to position a file outside its boundaries (11.6.1.2142 REPOSITION-FILE);

– attempting to read from file positions not yet written (11.6.1.2080 READ-FILE,
11.6.1.2090 READ-LINE);

– fileid is invalid (11.6.1.1717 INCLUDE-FILE);

– I/O exception reading or closing fileid (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED);

– named file cannot be opened (11.6.1.1718 INCLUDED);

– requesting an unmapped block number (11.3.2 Blocks in files);

– using 11.6.1.2218 SOURCE-ID when 7.6.1.0790 BLK is not zero.

– a file is required while it is being REQUIRED (11.6.2.2144.50) or INCLUDED (11.6.1.1718).

– a marker is defined outside and executed inside a file or vice versa, and the file is REQUIRED
(11.6.2.2144.50) again.

– the same file is required twice using different names (e.g., through symbolic links), or different files
with the same name are provided to 11.6.2.2144.50 REQUIRED (by doing some renaming between
the invocations of REQUIRED).

– the stack effect of including with 11.6.2.2144.50 REQUIRED the file is not (i×x -- i×x) .

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 111

11. FILE Word Set Forth 2012 RC1

11.4.1.3 Other system documentation

– no additional requirements.

11.4.2 Program documentation

11.4.2.1 Environmental dependencies

– requiring lines longer than 128 characters (11.3.5 Parsing);

– using more than eight levels of input-file nesting (11.3.3 Input source).

11.4.2.2 Other program documentation

– no additional requirements.

11.5 Compliance and labeling

11.5.1 Forth-2012 systems

The phrase “Providing the File Access word set” shall be appended to the label of any Standard System
that provides all of the File Access word set.

The phrase “Providing name(s) from the File Access Extensions word set” shall be appended to the label
of any Standard System that provides portions of the File Access Extensions word set.

The phrase “Providing the File Access Extensions word set” shall be appended to the label of any Standard
System that provides all of the File Access and File Access Extensions word sets.

11.5.2 Forth-2012 programs

The phrase “Requiring the File Access word set” shall be appended to the label of Standard Programs that
require the system to provide the File Access word set.

The phrase “Requiring name(s) from the File Access Extensions word set” shall be appended to the label
of Standard Programs that require the system to provide portions of the File Access Extensions word set.

The phrase “Requiring the File Access Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the File Access and File Access Extensions word sets.

11.6 Glossary

11.6.1 File Access words

11.6.1.0080 (“paren” FILE
(“ccc〈paren〉” --)

Extend the semantics of 6.1.0080 (to include:

When parsing from a text file, if the end of the parse area is reached before a right
parenthesis is found, refill the input buffer from the next line of the file, set >IN to zero,
and resume parsing, repeating this process until either a right parenthesis is found or the
end of the file is reached.

112 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 11. FILE Word Set

11.6.1.0765 BIN FILE
(fam1 -- fam2)

Modify the implementation-defined file access method fam1 to additionally select a
“binary”, i.e., not line oriented, file access method, giving access method fam2.

See: 11.6.1.2054 R/O, 11.6.1.2056 R/W, 11.6.1.2425 W/O, A.11.6.1.0765 BIN.

11.6.1.0900 CLOSE-FILE FILE
(fileid -- ior)

Close the file identified by fileid. ior is the implementation-defined I/O result code.

11.6.1.1010 CREATE-FILE FILE
(c-addr u fam -- fileid ior)

Create the file named in the character string specified by c-addr and u, and open it with
file access method fam. The meaning of values of fam is implementation defined. If a
file with the same name already exists, recreate it as an empty file.

If the file was successfully created and opened, ior is zero, fileid is its identifier, and the
file has been positioned to the start of the file.

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined.

See: A.11.6.1.1010 CREATE-FILE.

11.6.1.1190 DELETE-FILE FILE
(c-addr u -- ior)

Delete the file named in the character string specified by c-addr u. ior is the implement-
ation-defined I/O result code.

11.6.1.1520 FILE-POSITION FILE
(fileid -- ud ior)

ud is the current file position for the file identified by fileid. ior is the implementation-
defined I/O result code. ud is undefined if ior is non-zero.

11.6.1.1522 FILE-SIZE FILE
(fileid -- ud ior)

ud is the size, in characters, of the file identified by fileid. ior is the implementation-
defined I/O result code. This operation does not affect the value returned by FILE-
POSITION. ud is undefined if ior is non-zero.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 113

11. FILE Word Set Forth 2012 RC1

11.6.1.1717 INCLUDE-FILE FILE
(i×x fileid -- j×x)

Remove fileid from the stack. Save the current input source specification, including
the current value of SOURCE-ID. Store fileid in SOURCE-ID. Make the file specified
by fileid the input source. Store zero in BLK. Other stack effects are due to the words
included.

Repeat until end of file: read a line from the file, fill the input buffer from the contents
of that line, set >IN to zero, and interpret.

Text interpretation begins at the file position where the next file read would occur.

When the end of the file is reached, close the file and restore the input source specification
to its saved value.

An ambiguous condition exists if fileid is invalid, if there is an I/O exception reading
fileid, or if an I/O exception occurs while closing fileid. When an ambiguous condition
exists, the status (open or closed) of any files that were being interpreted is implement-
ation-defined.

See: 11.3.3 Input source, A.11.6.1.1717 INCLUDE-FILE.

11.6.1.1718 INCLUDED FILE
(i×x c-addr u -- j×x)

Remove c-addr u from the stack. Save the current input source specification, including
the current value of SOURCE-ID. Open the file specified by c-addr u, store the resulting
fileid in SOURCE-ID, and make it the input source. Store zero in BLK. Other stack
effects are due to the words included.

Repeat until end of file: read a line from the file, fill the input buffer from the contents
of that line, set >IN to zero, and interpret.

Text interpretation begins at the start of the file.

When the end of the file is reached, close the file and restore the input source specification
to its saved value.

An ambiguous condition exists if the named file can not be opened, if an I/O excep-
tion occurs reading the file, or if an I/O exception occurs while closing the file. When
an ambiguous condition exists, the status (open or closed) of any files that were being
interpreted is implementation-defined.

INCLUDED may allocate memory in data space before it starts interpreting the file.

See: 11.6.1.1717 INCLUDE-FILE, A.11.6.1.1718 INCLUDED.

114 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 11. FILE Word Set

11.6.1.1970 OPEN-FILE FILE
(c-addr u fam -- fileid ior)

Open the file named in the character string specified by c-addr u, with file access method
indicated by fam. The meaning of values of fam is implementation defined.

If the file is successfully opened, ior is zero, fileid is its identifier, and the file has been
positioned to the start of the file.

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined.

See: A.11.6.1.1970 OPEN-FILE.

11.6.1.2054 R/O “r-o” FILE
(-- fam)

fam is the implementation-defined value for selecting the “read only” file access method.

See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

11.6.1.2056 R/W “r-w” FILE
(-- fam)

fam is the implementation-defined value for selecting the “read/write” file access method.

See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

11.6.1.2080 READ-FILE FILE
(c-addr u1 fileid -- u2 ior)

Read u1 consecutive characters to c-addr from the current position of the file identified
by fileid.

If u1 characters are read without an exception, ior is zero and u2 is equal to u1.

If the end of the file is reached before u1 characters are read, ior is zero and u2 is the
number of characters actually read.

If the operation is initiated when the value returned by FILE-POSITION is equal to the
value returned by FILE-SIZE for the file identified by fileid, ior is zero and u2 is zero.

If an exception occurs, ior is the implementation-defined I/O result code, and u2 is the
number of characters transferred to c-addr without an exception.

An ambiguous condition exists if the operation is initiated when the value returned by
FILE-POSITION is greater than the value returned by FILE-SIZE for the file iden-
tified by fileid, or if the requested operation attempts to read portions of the file not
written.

At the conclusion of the operation, FILE-POSITION returns the next file position after
the last character read.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 115

11. FILE Word Set Forth 2012 RC1

See: A.11.6.1.2080 READ-FILE.

11.6.1.2090 READ-LINE FILE
(c-addr u1 fileid -- u2 flag ior)

Read the next line from the file specified by fileid into memory at the address c-addr. At
most u1 characters are read. Up to two implementation-defined line-terminating charac-
ters may be read into memory at the end of the line, but are not included in the count u2.
The line buffer provided by c-addr should be at least u1+2 characters long.

If the operation succeeded, flag is true and ior is zero. If a line terminator was received
before u1 characters were read, then u2 is the number of characters, not including the line
terminator, actually read (0 <= u2 <= u1). When u1 = u2 the line terminator has yet to
be reached.

If the operation is initiated when the value returned by FILE-POSITION is equal to the
value returned by FILE-SIZE for the file identified by fileid, flag is false, ior is zero,
and u2 is zero. If ior is non-zero, an exception occurred during the operation and ior is
the implementation-defined I/O result code.

An ambiguous condition exists if the operation is initiated when the value returned by
FILE-POSITION is greater than the value returned by FILE-SIZE for the file iden-
tified by fileid, or if the requested operation attempts to read portions of the file not
written.

At the conclusion of the operation, FILE-POSITION returns the next file position after
the last character read.

See: A.11.6.1.2090 READ-LINE.

11.6.1.2142 REPOSITION-FILE FILE
(ud fileid -- ior)

Reposition the file identified by fileid to ud. ior is the implementation-defined I/O result
code. An ambiguous condition exists if the file is positioned outside the file boundaries.

At the conclusion of the operation, FILE-POSITION returns the value ud.

11.6.1.2147 RESIZE-FILE FILE
(ud fileid -- ior)

Set the size of the file identified by fileid to ud. ior is the implementation-defined I/O
result code.

If the resultant file is larger than the file before the operation, the portion of the file added
as a result of the operation might not have been written.

At the conclusion of the operation, FILE-SIZE returns the value ud and FILE-
POSITION returns an unspecified value.

116 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 11. FILE Word Set

See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.1.2165 S" “s-quote” FILE
Extend the semantics of 6.1.2165 S" to be:

Interpretation: (“ccc〈quote〉” -- c-addr u)

Parse ccc delimited by " (double quote). Store the resulting string c-addr u at a tempo-
rary location. The maximum length of the temporary buffer is implementation-dependent
but shall be no less than 80 characters. Subsequent uses of S" may overwrite the tempo-
rary buffer. At least one such buffer shall be provided.

Compilation: (“ccc〈quote〉” --)

Parse ccc delimited by " (double quote). Append the run-time semantics given below to
the current definition.

Run-time: (-- c-addr u)

Return c-addr and u that describe a string consisting of the characters ccc.

See: 3.4.1 Parsing, 6.2.0855 C", 6.1.2165 S", 11.3.4 Other transient regions,
A.11.6.1.2165 S".

11.6.1.2218 SOURCE-ID “source-i-d” FILE
(-- 0 | -1 | fileid)

Extend 6.2.2218 SOURCE-ID to include text-file input as follows:

SOURCE-ID Input source
fileid Text file “fileid”

-1 String (via EVALUATE)
0 User input device

An ambiguous condition exists if SOURCE-ID is used when BLK contains a non-zero
value.

11.6.1.2425 W/O “w-o” FILE
(-- fam)

fam is the implementation-defined value for selecting the “write only” file access method.

See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

11.6.1.2480 WRITE-FILE FILE
(c-addr u fileid -- ior)

Write u characters from c-addr to the file identified by fileid starting at its current posi-
tion. ior is the implementation-defined I/O result code.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 117

11. FILE Word Set Forth 2012 RC1

At the conclusion of the operation, FILE-POSITION returns the next file position after
the last character written to the file, and FILE-SIZE returns a value greater than or
equal to the value returned by FILE-POSITION.

See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.1.2485 WRITE-LINE FILE
(c-addr u fileid -- ior)

Write u characters from c-addr followed by the implementation-dependent line termina-
tor to the file identified by fileid starting at its current position. ior is the implementation-
defined I/O result code.

At the conclusion of the operation, FILE-POSITION returns the next file position after
the last character written to the file, and FILE-SIZE returns a value greater than or
equal to the value returned by FILE-POSITION.

See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.2 File-Access extension words

11.6.2.1524 FILE-STATUS FILE EXT
(c-addr u -- x ior)

Return the status of the file identified by the character string c-addr u. If the file ex-
ists, ior is zero; otherwise ior is the implementation-defined I/O result code. x contains
implementation-defined information about the file.

11.6.2.1560 FLUSH-FILE FILE EXT
(fileid -- ior)

Attempt to force any buffered information written to the file referred to by fileid to be
written to mass storage, and the size information for the file to be recorded in the storage
directory if changed. If the operation is successful, ior is zero. Otherwise, it is an
implementation-defined I/O result code.

11.6.2.1714 INCLUDE FILE EXT
(i×x “name” -- j×x)

Skip leading white space and parse name delimited by a white space character. Push the
address and length of the name on the stack and perform the function of INCLUDED.

See: 11.6.1.1718 INCLUDED, A.11.6.2.1714 INCLUDE.

118 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 11. FILE Word Set

11.6.2.2125 REFILL FILE EXT
(-- flag)

Extend the execution semantics of 6.2.2125 REFILL with the following:

When the input source is a text file, attempt to read the next line from the text-input file.
If successful, make the result the current input buffer, set >IN to zero, and return true.
Otherwise return false.

See: 6.2.2125 REFILL, 7.6.2.2125 REFILL.

11.6.2.2130 RENAME-FILE FILE EXT
(c-addr1 u1 c-addr2 u2 -- ior)

Rename the file named by the character string c-addr1 u1 to the name in the character
string c-addr2 u2. ior is the implementation-defined I/O result code.

11.6.2.2144.10 REQUIRE FILE EXT
(i×x “name” -- i×x)

Skip leading white space and parse name delimited by a white space character. Push the
address and length of the name on the stack and perform the function of REQUIRED.

See: 11.6.2.2144.50 REQUIRED, A.11.6.2.2144.10 REQUIRE.

11.6.2.2144.50 REQUIRED FILE EXT
(i×x c-addr u -- i×x)

If the file specified by c-addr u has been INCLUDED or REQUIRED already, but not
between the definition and execution of a marker (or equivalent usage of FORGET),
discard c-addr u; otherwise, perform the function of INCLUDED.

An ambiguous condition exists if a file is REQUIRED while it is being REQUIRED or
INCLUDED.

An ambiguous condition exists, if a marker is defined outside and executed inside a file
or vice versa, and the file is REQUIRED again.

An ambiguous condition exists if the same file is REQUIRED twice using different names
(e.g., through symbolic links), or different files with the same name are REQUIRED (by
doing some renaming between the invocations of REQUIRED).

An ambiguous condition exists if the stack effect of including the file is not (i×x --
i×x) .

See: A.11.6.2.2144.50 REQUIRED.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 119

12. FLOATING Word Set Forth 2012 RC1

12 The optional Floating-Point word set

12.1 Introduction

12.2 Additional terms and notation

12.2.1 Definition of terms

float-aligned address: The address of a memory location at which a floating-point number can be ac-
cessed.

double-float-aligned address: The address of a memory location at which a 64-bit IEEE double-precision
floating-point number can be accessed.

single-float-aligned address: The address of a memory location at which a 32-bit IEEE single-precision
floating-point number can be accessed.

IEEE floating-point number: A single- or double-precision floating-point number as defined in
ANSI/IEEE 754-1985.

12.2.2 Notation

12.2.2.2 Stack notation

Floating-point stack notation is:

(F: before -- after)

A unified stack notation is provided for systems with the environmental restriction that the floating-point
numbers are kept on the data stack.

12.3 Additional usage requirements

12.3.1 Data types

Append table 12.1 to table 3.1.

Table 12.1: Data Types
Symbol Data type Size on stack
df-addr double-float-aligned address 1 cell
f-addr float-aligned address 1 cell
sf-addr single-float-aligned address 1 cell

12.3.1.1 Addresses

The set of float-aligned addresses is an implementation-defined subset of the set of aligned addresses.
Adding the size of a floating-point number to a float-aligned address shall produce a float-aligned address.

120 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

The set of double-float-aligned addresses is an implementation-defined subset of the set of aligned ad-
dresses. Adding the size of a 64-bit IEEE double-precision floating-point number to a double-float-aligned
address shall produce a double-float-aligned address.

The set of single-float-aligned addresses is an implementation-defined subset of the set of aligned addresses.
Adding the size of a 32-bit IEEE single-precision floating-point number to a single-float-aligned address
shall produce a single-float-aligned address.

12.3.1.2 Floating-point numbers

The internal representation of a floating-point number, including the format and precision of the significand
and the format and range of the exponent, is implementation defined.

Any rounding or truncation of floating-point numbers is implementation defined.

12.3.2 Floating-point operations

“Round to nearest” means round the result of a floating-point operation to the representable value nearest
the result. If the two nearest representable values are equally near the result, the one having zero as its least
significant bit shall be delivered.

“Round toward negative infinity” means round the result of a floating-point operation to the representable
value nearest to and no greater than the result.

“Round toward zero” means round the result of a floating-point operation to the representable value nearest
to zero, frequently referred to as “truncation”.

12.3.3 Floating-point stack

A last in, first out list that shall be used by all floating-point operators.

The width of the floating-point stack is implementation-defined. The floating-point stack shall be separate
from the data and return stacks.

The size of a floating-point stack shall be at least 6 items.

A program that depends on the floating-point stack being larger than six items has an environmental de-
pendency.

12.3.4 Environmental queries

Append table 12.2 to table 3.5.

See: 3.2.6 Environmental queries.

12.3.5 Address alignment

Since the address returned by a CREATEd word is not necessarily aligned for any particular class of
floating-point data, a program shall align the address (to be float aligned, single-float aligned, or double-
float aligned) before accessing floating-point data at the address.

See: 3.3.3.1 Address alignment, 12.3.1.1 Addresses.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 121

12. FLOATING Word Set Forth 2012 RC1

Table 12.2: Environmental Query Strings
String Value data type Constant? Meaning
FLOATING-STACK n yes the maximum depth of the separate floating-

point stack. On systems with the environ-
mental restriction of keeping floating-point
items on the data stack, n = 0.

MAX-FLOAT r yes largest usable floating-point number

12.3.6 Variables

A program may address memory in data space regions made available by FVARIABLE. These regions may
be non-contiguous with regions subsequently allocated with , (comma) or ALLOT. See: 3.3.3.3 Variables.

12.3.7 Text interpreter input number conversion

If the Floating-Point word set is present in the dictionary and the current base is DECIMAL, the input
number-conversion algorithm shall be extended to recognize floating-point numbers in this form:

Convertible string := 〈significand〉〈exponent〉
〈significand〉 := [〈sign〉]〈digits〉[.〈digits0〉]
〈exponent〉 := E[〈sign〉]〈digits0〉
〈sign〉 := { + | - }
〈digits〉 := 〈digit〉〈digits0〉
〈digits0〉 := 〈digit〉*
〈digit〉 := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

These are examples of valid representations of floating-point numbers in program source:

1E 1.E 1.E0 +1.23E-1 -1.23E+1

See: 3.4.1.3 Text interpreter input number conversion, 12.6.1.0558 >FLOAT.

12.4 Additional documentation requirements

12.4.1 System documentation

12.4.1.1 Implementation-defined options

– format and range of floating-point numbers (12.3.1 Data types, 12.6.1.2143 REPRESENT)

– results of 12.6.1.2143 REPRESENT when float is out of range;

– rounding or truncation of floating-point numbers (12.3.1.2 Floating-point numbers);

– size of floating-point stack (12.3.3 Floating-point stack);

– width of floating-point stack (12.3.3 Floating-point stack).

12.4.1.2 Ambiguous conditions

– DF@ or DF! is used with an address that is not double-float aligned;

122 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

– F@ or F! is used with an address that is not float aligned;

– floating point result out of range (e.g., in 12.6.1.1430 F/);

– SF@ or SF! is used with an address that is not single-float aligned;

– BASE is not decimal (12.6.1.2143 REPRESENT, 12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613
FS.);

– both arguments equal zero (12.6.2.1489 FATAN2);

– cosine of argument is zero for 12.6.2.1625 FTAN;

– d can’t be precisely represented as float in 12.6.1.1130 D>F;

– dividing by zero (12.6.1.1430 F/);

– exponent too big for conversion (12.6.2.1203 DF!, 12.6.2.1204 DF@, 12.6.2.2202 SF!, 12.6.2.2203
SF@);

– float less than one (12.6.2.1477 FACOSH);

– float less than or equal to minus-one (12.6.2.1554 FLNP1);

– float less than or equal to zero (12.6.2.1553 FLN, 12.6.2.1557 FLOG);

– float less than zero (12.6.2.1618 FSQRT);

– float magnitude greater than one (12.6.2.1476 FACOS, 12.6.2.1486 FASIN, 12.6.2.1491 FATANH);

– integer part of float can’t be represented by d in 12.6.1.1470 F>D;

– string larger than pictured-numeric output area (12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613
FS.).

– n can’t be precisely represented as float in 12.6.2.2175 S>F;

– integer part of float can’t be represented by n in 12.6.2.1471 F>S.

12.4.1.3 Other system documentation

– no additional requirements.

12.4.1.4 Environmental restrictions

– Keeping floating-point numbers on the data stack.

12.4.2 Program documentation

12.4.2.1 Environmental dependencies

– requiring the floating-point stack to be larger than six items (12.3.3 Floating-point stack).

– requiring floating-point numbers to be kept on the data stack, with n cells per floating point number.

12.4.2.2 Other program documentation

– no additional requirements.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 123

12. FLOATING Word Set Forth 2012 RC1

12.5 Compliance and labeling

12.5.1 Forth-2012 systems

The phrase “Providing the Floating-Point word set” shall be appended to the label of any Standard System
that provides all of the Floating-Point word set.

The phrase “Providing name(s) from the Floating-Point Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Floating-Point Extensions word set.

The phrase “Providing the Floating-Point Extensions word set” shall be appended to the label of any Stand-
ard System that provides all of the Floating-Point and Floating-Point Extensions word sets.

12.5.2 Forth-2012 programs

The phrase “Requiring the Floating-Point word set” shall be appended to the label of Standard Programs
that require the system to provide the Floating-Point word set.

The phrase “Requiring name(s) from the Floating-Point Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Floating-Point Extensions
word set.

The phrase “Requiring the Floating-Point Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Floating-Point and Floating-Point Extensions word
sets.

12.6 Glossary

12.6.1 Floating-Point words

12.6.1.0558 >FLOAT “to-float” FLOATING
(c-addr u -- true | false) (F: -- r |) or (c-addr u -- r true | false)

An attempt is made to convert the string specified by c-addr and u to internal floating-
point representation. If the string represents a valid floating-point number in the syntax
below, its value r and true are returned. If the string does not represent a valid floating-
point number only false is returned.

A string of blanks should be treated as a special case representing zero.

The syntax of a convertible string

:= 〈significand〉[〈exponent〉]
〈significand〉 := [〈sign〉]{〈digits〉[.〈digits0〉] | .〈digits〉 }
〈exponent〉 := 〈marker〉〈digits0〉
〈marker〉 := {〈e-form〉 | 〈sign-form〉}
〈e-form〉 := 〈e-char〉[〈sign-form〉]

〈sign-form〉 := { + | - }
〈e-char〉 := { D | d | E | e }

See: A.12.6.1.0558 >FLOAT.

124 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.1.1130 D>F “d-to-f” FLOATING
(d --) (F: -- r) or (d -- r)

r is the floating-point equivalent of d. An ambiguous condition exists if d cannot be
precisely represented as a floating-point value.

12.6.1.1400 F! “f-store” FLOATING
(f-addr --) (F: r --) or (r f-addr --)

Store r at f-addr.

12.6.1.1410 F* “f-star” FLOATING
(F: r1 r2 -- r3) or (r1 r2 -- r3)

Multiply r1 by r2 giving r3.

12.6.1.1420 F+ “f-plus” FLOATING
(F: r1 r2 -- r3) or (r1 r2 -- r3)

Add r1 to r2 giving the sum r3.

12.6.1.1425 F- “f-minus” FLOATING
(F: r1 r2 -- r3) or (r1 r2 -- r3)

Subtract r2 from r1, giving r3.

12.6.1.1430 F/ “f-slash” FLOATING
(F: r1 r2 -- r3) or (r1 r2 -- r3)

Divide r1 by r2, giving the quotient r3. An ambiguous condition exists if r2 is zero, or the
quotient lies outside of the range of a floating-point number.

12.6.1.1440 F0< “f-zero-less-than” FLOATING
(-- flag) (F: r --) or (r -- flag)

flag is true if and only if r is less than zero.

12.6.1.1450 F0= “f-zero-equals” FLOATING
(-- flag) (F: r --) or (r -- flag)

flag is true if and only if r is equal to zero.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 125

12. FLOATING Word Set Forth 2012 RC1

12.6.1.1460 F< “f-less-than” FLOATING
(-- flag) (F: r1 r2 --) or (r1 r2 -- flag)

flag is true if and only if r1 is less than r2.

12.6.1.1470 F>D “f-to-d” FLOATING
(-- d) (F: r --) or (r -- d)

d is the double-cell signed-integer equivalent of the integer portion of r. The fractional
portion of r is discarded. An ambiguous condition exists if the integer portion of r cannot
be precisely represented as a double-cell signed integer.

12.6.1.1472 F@ “f-fetch” FLOATING
(f-addr --) (F: -- r) or (f-addr -- r)

r is the value stored at f-addr.

12.6.1.1479 FALIGN “f-align” FLOATING
(--)

If the data-space pointer is not float aligned, reserve enough data space to make it so.

12.6.1.1483 FALIGNED “f-aligned” FLOATING
(addr -- f-addr)

f-addr is the first float-aligned address greater than or equal to addr.

12.6.1.1492 FCONSTANT “f-constant” FLOATING
(“〈spaces〉name” --) (F: r --) or (r “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below.

name is referred to as an “f-constant”.

name Execution: (--) (F: -- r) or (-- r)

Place r on the floating-point stack.

See: 3.4.1 Parsing, A.12.6.1.1492 FCONSTANT.

12.6.1.1497 FDEPTH “f-depth” FLOATING
(-- +n)

+n is the number of values contained on the floating-point stack. If the system has an
environmental restriction of keeping the floating-point numbers on the data stack, +n is
the current number of possible floating-point values contained on the data stack.

126 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.1.1500 FDROP “f-drop” FLOATING
(F: r --) or (r --)

Remove r from the floating-point stack.

12.6.1.1510 FDUP “f-dupe” FLOATING
(F: r -- r r) or (r -- r r)

Duplicate r.

12.6.1.1552 FLITERAL “f-literal” FLOATING
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (F: r --) or (r --)

Append the run-time semantics given below to the current definition.

Run-time: (F: -- r) or (-- r)

Place r on the floating-point stack.

See: A.12.6.1.1552 FLITERAL.

12.6.1.1555 FLOAT+ “float-plus” FLOATING
(f-addr1 -- f-addr2)

Add the size in address units of a floating-point number to f-addr1, giving f-addr2.

12.6.1.1556 FLOATS FLOATING
(n1 -- n2)

n2 is the size in address units of n1 floating-point numbers.

12.6.1.1558 FLOOR FLOATING
(F: r1 -- r2) or (r1 -- r2)

Round r1 to an integral value using the “round toward negative infinity” rule, giving r2.

See: 12.3.2 Floating-point operations, 12.6.1.1612 FROUND, 12.6.2.1627 FTRUNC.

12.6.1.1562 FMAX “f-max” FLOATING
(F: r1 r2 -- r3) or (r1 r2 -- r3)

r3 is the greater of r1 and r2.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 127

12. FLOATING Word Set Forth 2012 RC1

12.6.1.1565 FMIN “f-min” FLOATING
(F: r1 r2 -- r3) or (r1 r2 -- r3)

r3 is the lesser of r1 and r2.

12.6.1.1567 FNEGATE “f-negate” FLOATING
(F: r1 -- r2) or (r1 -- r2)

r2 is the negation of r1.

12.6.1.1600 FOVER “f-over” FLOATING
(F: r1 r2 -- r1 r2 r1) or (r1 r2 -- r1 r2 r1)

Place a copy of r1 on top of the floating-point stack.

12.6.1.1610 FROT “f-rote” FLOATING
(F: r1 r2 r3 -- r2 r3 r1) or (r1 r2 r3 -- r2 r3 r1)

Rotate the top three floating-point stack entries.

12.6.1.1612 FROUND “f-round” FLOATING
(F: r1 -- r2) or (r1 -- r2)

Round r1 to an integral value using the “round to nearest” rule, giving r2.

See: 12.3.2 Floating-point operations, 12.6.1.1558 FLOOR, 12.6.2.1627 FTRUNC.

12.6.1.1620 FSWAP “f-swap” FLOATING
(F: r1 r2 -- r2 r1) or (r1 r2 -- r2 r1)

Exchange the top two floating-point stack items.

12.6.1.1630 FVARIABLE “f-variable” FLOATING
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve 1 FLOATS address units of
data space at a float-aligned address.

name is referred to as an “f-variable”.

name Execution: (-- f-addr)

f-addr is the address of the data space reserved by FVARIABLE when it created name.
A program is responsible for initializing the contents of the reserved space.

See: 3.4.1 Parsing, A.12.6.1.1630 FVARIABLE.

128 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.1.2143 REPRESENT FLOATING
(c-addr u -- n flag1 flag2) (F: r --) or (r c-addr u -- n flag1 flag2)

At c-addr, place the character-string external representation of the significand of the
floating-point number r. Return the decimal-base exponent as n, the sign as flag1 and
“valid result” as flag2. The character string shall consist of the u most significant digits
of the significand represented as a decimal fraction with the implied decimal point to the
left of the first digit, and the first digit zero only if all digits are zero. The significand
is rounded to u digits following the “round to nearest” rule; n is adjusted, if necessary,
to correspond to the rounded magnitude of the significand. If flag2 is true then r was
in the implementation-defined range of floating-point numbers. If flag1 is true then r is
negative.

An ambiguous condition exists if the value of BASE is not decimal ten.

When flag2 is false, n and flag1 are implementation defined, as are the contents of c-addr.
Under these circumstances, the string at c-addr shall consist of graphic characters.

See: 3.2.1.2 Digit conversion, 6.1.0750 BASE, 12.3.2 Floating-point operations,
A.12.6.1.2143 REPRESENT.

12.6.2 Floating-Point extension words

12.6.2.1203 DF! “d-f-store” FLOATING EXT
(df-addr --) (F: r --) or (r df-addr --)

Store the floating-point number r as a 64-bit IEEE double-precision number at df-addr.
If the significand of the internal representation of r has more precision than the IEEE
double-precision format, it will be rounded using the “round to nearest” rule. An am-
biguous condition exists if the exponent of r is too large to be accommodated in IEEE
double-precision format.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

12.6.2.1204 DF@ “d-f-fetch” FLOATING EXT
(df-addr --) (F: -- r) or (df-addr -- r)

Fetch the 64-bit IEEE double-precision number stored at df-addr to the floating-point
stack as r in the internal representation. If the IEEE double-precision significand has
more precision than the internal representation it will be rounded to the internal repre-
sentation using the “round to nearest” rule. An ambiguous condition exists if the expo-
nent of the IEEE double-precision representation is too large to be accommodated by the
internal representation.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 129

12. FLOATING Word Set Forth 2012 RC1

12.6.2.1205 DFALIGN “d-f-align” FLOATING EXT
(--)

If the data-space pointer is not double-float aligned, reserve enough data space to make
it so.

See: 12.3.1.1 Addresses.

12.6.2.1207 DFALIGNED “d-f-aligned” FLOATING EXT
(addr -- df-addr)

df-addr is the first double-float-aligned address greater than or equal to addr.

See: 12.3.1.1 Addresses.

12.6.2.1207.40 DFFIELD: “d-f-field-colon” FLOATING EXT
(n1 “〈spaces〉name” -- n2)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first double-
float aligned value greater than or equal to n1. n2 = offset + 1 double-float.

Create a definition for name with the execution semantics given below.

name Execution: (addr1 -- addr2)

Add the offset calculated during the compile time action to addr1 giving the double-float
aligned address addr2.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

12.6.2.1208 DFLOAT+ “d-float-plus” FLOATING EXT
(df-addr1 -- df-addr2)

Add the size in address units of a 64-bit IEEE double-precision number to df-addr1,
giving df-addr2.

See: 12.3.1.1 Addresses.

12.6.2.1209 DFLOATS “d-floats” FLOATING EXT
(n1 -- n2)

n2 is the size in address units of n1 64-bit IEEE double-precision numbers.

12.6.2.1415 F** “f-star-star” FLOATING EXT
(F: r1 r2 -- r3) or (r1 r2 -- r3)

Raise r1 to the power r2, giving the product r3.

130 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.2.1427 F. “f-dot” FLOATING EXT
(--) (F: r --) or (r --)

Display, with a trailing space, the top number on the floating-point stack using fixed-
point notation:

[-] 〈digits〉.〈digits0〉

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the char-
acter string representation exceeds the size of the pictured numeric output string buffer.

See: 12.6.1.0558 >FLOAT, A.12.6.2.1427 F.

12.6.2.1471 F>S “f-to-s” FLOATING EXT
(-- n) (F: r --) or (r -- n)

n is the single-cell signed-integer equivalent of the integer portion of r. The fractional
portion of r is discarded. An ambiguous condition exists if the integer portion of r cannot
be precisely represented as a single-cell signed integer.

Note: Rounding the floating-point value prior to calling F>S is advised.

See: 12.6.2.2175 S>F.

12.6.2.1474 FABS “f-abs” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the absolute value of r1.

12.6.2.1476 FACOS “f-a-cos” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the principal radian angle whose cosine is r1. An ambiguous condition exists if
| r1 | is greater than one.

12.6.2.1477 FACOSH “f-a-cosh” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the floating-point value whose hyperbolic cosine is r1. An ambiguous condition
exists if r1 is less than one.

12.6.2.1484 FALOG “f-a-log” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

Raise ten to the power r1, giving r2.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 131

12. FLOATING Word Set Forth 2012 RC1

12.6.2.1486 FASIN “f-a-sine” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the principal radian angle whose sine is r1. An ambiguous condition exists if | r1 | is
greater than one.

12.6.2.1487 FASINH “f-a-cinch” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the floating-point value whose hyperbolic sine is r1.

12.6.2.1488 FATAN “f-a-tan” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the principal radian angle whose tangent is r1.

12.6.2.1489 FATAN2 “f-a-tan-two” FLOATING EXT
(F: r1 r2 -- r3) or (r1 r2 -- r3)

r3 is the principal radian angle (between -π and π) whose tangent is r1/r2. A system that
returns false for “-0E 0E 0E F~” shall return a value (approximating)−π when r1 =
0E and r2 is negative. An ambiguous condition exists if r1 and r2 are zero.

See: A.12.6.2.1489 FATAN2.

12.6.2.1491 FATANH “f-a-tan-h” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the floating-point value whose hyperbolic tangent is r1. An ambiguous condition
exists if r1 is outside the range of -1E0 to 1E0.

12.6.2.1493 FCOS “f-cos” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the cosine of the radian angle r1.

12.6.2.1494 FCOSH “f-cosh” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the hyperbolic cosine of r1.

132 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.2.1513 FE. “f-e-dot” FLOATING EXT
(--) (F: r --) or (r --)

Display, with a trailing space, the top number on the floating-point stack using engineer-
ing notation, where the significand is greater than or equal to 1.0 and less than 1000.0
and the decimal exponent is a multiple of three.

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the char-
acter string representation exceeds the size of the pictured numeric output string buffer.

See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT.

12.6.2.1515 FEXP “f-e-x-p” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

Raise e to the power r1, giving r2.

12.6.2.1516 FEXPM1 “f-e-x-p-m-one” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

Raise e to the power r1 and subtract one, giving r2.

See: A.12.6.2.1516 FEXPM1.

12.6.2.1517 FFIELD: “f-field-colon” FLOATING EXT
(n1 “〈spaces〉name” -- n2)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first float
aligned value greater than or equal to n1. n2 = offset + 1 float.

Create a definition for name with the execution semantics given below.

name Execution: (addr1 -- addr2)

Add the offset calculated during the compile time action to addr1 giving the float aligned
address addr2.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

12.6.2.1553 FLN “f-l-n” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the natural logarithm of r1. An ambiguous condition exists if r1 is less than or equal
to zero.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 133

12. FLOATING Word Set Forth 2012 RC1

12.6.2.1554 FLNP1 “f-l-n-p-one” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the natural logarithm of the quantity r1 plus one. An ambiguous condition exists if
r1 is less than or equal to negative one.

See: A.12.6.2.1554 FLNP1.

12.6.2.1557 FLOG “f-log” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the base-ten logarithm of r1. An ambiguous condition exists if r1 is less than or
equal to zero.

12.6.2.1613 FS. “f-s-dot” FLOATING EXT
(--) (F: r --) or (r --)

Display, with a trailing space, the top number on the floating-point stack in scientific
notation: 〈significand〉〈exponent〉 where:

〈significand〉 := [-]〈digit〉.〈digits0〉
〈exponent〉 := E[-]〈digits〉

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the char-
acter string representation exceeds the size of the pictured numeric output string buffer.

See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT.

12.6.2.1614 FSIN “f-sine” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the sine of the radian angle r1.

12.6.2.1616 FSINCOS “f-sine-cos” FLOATING EXT
(F: r1 -- r2 r3) or (r1 -- r2 r3)

r2 is the sine of the radian angle r1. r3 is the cosine of the radian angle r1.

See: A.12.6.2.1489 FATAN2.

12.6.2.1617 FSINH “f-cinch” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the hyperbolic sine of r1.

134 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.2.1618 FSQRT “f-square-root” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the square root of r1. An ambiguous condition exists if r1 is less than zero.

12.6.2.1625 FTAN “f-tan” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the tangent of the radian angle r1. An ambiguous condition exists if cos(r1) is zero.

12.6.2.1626 FTANH “f-tan-h” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

r2 is the hyperbolic tangent of r1.

12.6.2.1627 FTRUNC “f-trunc” FLOATING EXT
(F: r1 -- r2) or (r1 -- r2)

Round r1 to an integral value using the “round towards zero” rule, giving r2.

See: 12.3.2 Floating-point operations, 12.6.1.1612 FROUND, 12.6.1.1558 FLOOR.

12.6.2.1628 FVALUE “f-value” FLOATING EXT
(F: r --) (“〈spaces〉name” --) or (r “〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value equal to r.

name is referred to as a “f-value”.

name Execution: (F: -- r) or (-- r)

Place r on the floating point stack. The value of r is that given when name was created,
until the phrase “r TO name” is executed, causing a new value of r to be assigned to
name.

TO name Run-time: (F: r --) or (r --)

Assign the value r to name.

See: 3.4.1 Parsing, 6.2.2295 TO

12.6.2.1640 F~ “f-proximate” FLOATING EXT
(-- flag) (F: r1 r2 r3 --) or (r1 r2 r3 -- flag)

If r3 is positive, flag is true if the absolute value of (r1 minus r2) is less than r3.

If r3 is zero, flag is true if the implementation-dependent encoding of r1 and r2 are exactly
identical (positive and negative zero are unequal if they have distinct encodings).

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 135

12. FLOATING Word Set Forth 2012 RC1

If r3 is negative, flag is true if the absolute value of (r1 minus r2) is less than the absolute
value of r3 times the sum of the absolute values of r1 and r2.

See: A.12.6.2.1640 F~.

12.6.2.2035 PRECISION FLOATING EXT
(-- u)

Return the number of significant digits currently used by F., FE., or FS. as u.

12.6.2.2175 S>F “s-to-f” FLOATING EXT
(n --) (F: -- r) or (n -- r)

r is the floating-point equivalent of the single-cell value n. An ambiguous condition
exists if n can not be precisely represented as a floating-point value.

See: 12.6.2.1471 F>S.

12.6.2.2200 SET-PRECISION FLOATING EXT
(u --)

Set the number of significant digits currently used by F., FE., or FS. to u.

12.6.2.2202 SF! “s-f-store” FLOATING EXT
(sf-addr --) (F: r --) or (r sf-addr --)

Store the floating-point number r as a 32-bit IEEE single-precision number at sf-addr. If
the significand of the internal representation of r has more precision than the IEEE single-
precision format, it will be rounded using the “round to nearest” rule. An ambiguous
condition exists if the exponent of r is too large to be accommodated by the IEEE single-
precision format.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

12.6.2.2203 SF@ “s-f-fetch” FLOATING EXT
(sf-addr --) (F: -- r) or (sf-addr -- r)

Fetch the 32-bit IEEE single-precision number stored at sf-addr to the floating-point
stack as r in the internal representation. If the IEEE single-precision significand has more
precision than the internal representation, it will be rounded to the internal representation
using the “round to nearest” rule. An ambiguous condition exists if the exponent of the
IEEE single-precision representation is too large to be accommodated by the internal
representation.

See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

136 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 12. FLOATING Word Set

12.6.2.2204 SFALIGN “s-f-align” FLOATING EXT
(--)

If the data-space pointer is not single-float aligned, reserve enough data space to make it
so.

See: 12.3.1.1 Addresses.

12.6.2.2206 SFALIGNED “s-f-aligned” FLOATING EXT
(addr -- sf-addr)

sf-addr is the first single-float-aligned address greater than or equal to addr.

See: 12.3.1.1 Addresses.

12.6.2.2206.40 SFFIELD: “s-f-field-colon” FLOATING EXT
(n1 “〈spaces〉name” -- n2)

Skip leading space delimiters. Parse name delimited by a space. Offset is the first single-
float aligned value greater than or equal to n1. n2 = offset + 1 single-float.

Create a definition for name with the execution semantics given below.

name Execution: (addr1 -- addr2)

Add the offset calculated during the compile time action to addr1 giving the single-float
aligned address addr2.

See: 10.6.2.0135 +FIELD, 10.6.2.0763 BEGIN-STRUCTURE,
10.6.2.1336 END-STRUCTURE, A.10.6.2.1518 FIELD:.

12.6.2.2207 SFLOAT+ “s-float-plus” FLOATING EXT
(sf-addr1 -- sf-addr2)

Add the size in address units of a 32-bit IEEE single-precision number to sf-addr1, giving
sf-addr2.

See: 12.3.1.1 Addresses.

12.6.2.2208 SFLOATS “s-floats” FLOATING EXT
(n1 -- n2)

n2 is the size in address units of n1 32-bit IEEE single-precision numbers.

See: 12.3.1.1 Addresses.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 137

13. LOCAL Word Set Forth 2012 RC1

13 The optional Locals word set

13.1 Introduction
See: A.13 The optional Locals word set.

13.2 Additional terms and notation
None.

13.3 Additional usage requirements

13.3.1 Locals

A local is a data object whose execution semantics shall return its value, whose scope shall be limited to the
definition in which it is declared, and whose use in a definition shall not preclude reentrancy or recursion.

13.3.2 Environmental queries

Append table 13.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 13.1: Environmental Query Strings
String Value data type Constant? Meaning
#LOCALS n yes maximum number of local variables in a def-

inition

13.3.3 Processing locals

To support the locals word set, a system shall provide a mechanism to receive the messages defined by
(LOCAL) and respond as described here.

During the compilation of a definition after : (colon), :NONAME, or DOES>, a program may begin sending
local identifier messages to the system. The process shall begin when the first message is sent. The process
shall end when the “last local” message is sent. The system shall keep track of the names, order, and
number of identifiers contained in the complete sequence.

13.3.3.1 Compilation semantics

The system, upon receipt of a sequence of local-identifier messages, shall take the following actions at
compile time:

a) Create temporary dictionary entries for each of the identifiers passed to (LOCAL), such that each
identifier will behave as a local. These temporary dictionary entries shall vanish at the end of the defi-
nition, denoted by ; (semicolon), ;CODE, or DOES>. The system need not maintain these identifiers
in the same way it does other dictionary entries as long as they can be found by normal diction-
ary searching processes. Furthermore, if the Search-Order word set is present, local identifiers shall

138 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 13. LOCAL Word Set

always be searched before any of the word lists in any definable search order, and none of the Search-
Order words shall change the locals’ privileged position in the search order. Local identifiers may
reside in mass storage.

b) For each identifier passed to (LOCAL), the system shall generate an appropriate code sequence that
does the following at execution time:

1) Allocate a storage resource adequate to contain the value of a local. The storage shall be
allocated in a way that does not preclude re-entrancy or recursion in the definition using the
local.

2) Initialize the value using the top item on the data stack. If more than one local is declared, the
top item on the stack shall be moved into the first local identified, the next item shall be moved
into the second, and so on.

The storage resource may be the return stack or may be implemented in other ways, such as in
registers. The storage resource shall not be the data stack. Use of locals shall not restrict use of the
data stack before or after the point of declaration.

c) Arrange that any of the legitimate methods of terminating execution of a definition, specifically ;
(semicolon), ;CODE, DOES> or EXIT, will release the storage resource allocated for the locals, if
any, declared in that definition. ABORT shall release all local storage resources, and CATCH / THROW
(if implemented) shall release such resources for all definitions whose execution is being terminated.

d) Separate sets of locals may be declared in defining words before DOES> for use by the defining
word, and after DOES> for use by the word defined.

A system implementing the Locals word set shall support the declaration of at least sixteen locals in a
definition.

13.3.3.2 Syntax restrictions

Immediate words in a program may use (LOCAL) to implement syntaxes for local declarations with the
following restrictions:

a) A program shall not compile any executable code into the current definition between the time
(LOCAL) is executed to identify the first local for that definition and the time of sending the single
required “last local” message;

b) The position in program source at which the sequence of (LOCAL) messages is sent, referred to
here as the point at which locals are declared, shall not lie within the scope of any control structure;

c) Locals shall not be declared until values previously placed on the return stack within the definition
have been removed;

d) After a definition’s locals have been declared, a program may place data on the return stack. How-
ever, if this is done, locals shall not be accessed until those values have been removed from the return
stack;

e) Words that return execution tokens, such as ’ (tick), [’], or FIND, shall not be used with local
names;

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 139

13. LOCAL Word Set Forth 2012 RC1

f) A program that declares more than sixteen locals in a single definition has an environmental depend-
ency;

g) Locals may be accessed or updated within control structures, including do-loops;

h) Local names shall not be referenced by POSTPONE and [COMPILE].

See: 3.4 The Forth text interpreter.

13.4 Additional documentation requirements

13.4.1 System documentation

13.4.1.1 Implementation-defined options

– maximum number of locals in a definition (13.3.3 Processing locals, 13.6.2.1795 LOCALS|).

13.4.1.2 Ambiguous conditions

– executing a named local while in interpretation state (13.6.1.0086 (LOCAL));

– a local name ends in “:”, “[”, “^”;

– a local name is a single non-alphabetic character;

– the text between {: and :} extends over more than one line;

– {: . . . :} is used more than once in a word.

13.4.1.3 Other system documentation

– no additional requirements.

13.4.2 Program documentation

13.4.2.1 Environmental dependencies

– declaring more than sixteen locals in a single definition (13.3.3 Processing locals).

13.4.2.2 Other program documentation

– no additional requirements.

13.5 Compliance and labeling

13.5.1 Forth-2012 systems

The phrase “Providing the Locals word set” shall be appended to the label of any Standard System that
provides all of the Locals word set.

The phrase “Providing name(s) from the Locals Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Locals Extensions word set.

The phrase “Providing the Locals Extensions word set” shall be appended to the label of any Standard
System that provides all of the Locals and Locals Extensions word sets.

140 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 13. LOCAL Word Set

13.5.2 Forth-2012 programs

The phrase “Requiring the Locals word set” shall be appended to the label of Standard Programs that
require the system to provide the Locals word set.

The phrase “Requiring name(s) from the Locals Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Locals Extensions word set.

The phrase “Requiring the Locals Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Locals and Locals Extensions word sets.

13.6 Glossary

13.6.1 Locals words

13.6.1.0086 (LOCAL) “paren-local-paren” LOCAL
Interpretation: Interpretation semantics for this word are undefined.

Execution: (c-addr u --)

When executed during compilation, (LOCAL) passes a message to the system that has
one of two meanings. If u is non-zero, the message identifies a new local whose defi-
nition name is given by the string of characters identified by c-addr u. If u is zero, the
message is “last local” and c-addr has no significance.

The result of executing (LOCAL) during compilation of a definition is to create a set
of named local identifiers, each of which is a definition name, that only have execution
semantics within the scope of that definition’s source.

local Execution: (-- x)

Push the local’s value, x, onto the stack. The local’s value is initialized as described in
13.3.3 Processing locals and may be changed by preceding the local’s name with TO.
An ambiguous condition exists when local is executed while in interpretation state.

TO local Run-time: (x --)

Assign the value x to the local value local.

Note: This word does not have special compilation semantics in the usual sense because it
provides access to a system capability for use by other user-defined words that do have
them. However, the locals facility as a whole and the sequence of messages passed
defines specific usage rules with semantic implications that are described in detail in
section 13.3.3 Processing locals.

Note: This word is not intended for direct use in a definition to declare that definition’s locals.
It is instead used by system or user compiling words. These compiling words in turn
define their own syntax, and may be used directly in definitions to declare locals. In
this context, the syntax for (LOCAL) is defined in terms of a sequence of compile-time
messages and is described in detail in section 13.3.3 Processing locals.

See: 3.4 The Forth text interpreter and 6.2.2295 TO.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 141

13. LOCAL Word Set Forth 2012 RC1

13.6.2 Locals extension words

13.6.2.1795 LOCALS| “locals-bar” LOCAL EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name1” “〈spaces〉name2” . . . “〈spaces〉namen” “ | ” --)

Create up to eight local identifiers by repeatedly skipping leading spaces, parsing name,
and executing 13.6.1.0086 (LOCAL). The list of locals to be defined is terminated by | .
Append the run-time semantics given below to the current definition.

Run-time: (xn . . . x2 x1 --)

Initialize up to eight local identifiers as described in 13.6.1.0086 (LOCAL), each of
which takes as its initial value the top stack item, removing it from the stack. Identifier
name1 is initialized with x1, identifier name2 with x2, etc. When invoked, each local will
return its value. The value of a local may be changed using 6.2.2295 TO.

13.6.2.2550 {: “brace-colon” LOCAL EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (i×x “〈spaces〉ccc :}” --)

Parse ccc according to the following syntax:

{: 〈arg〉* [| 〈val〉*] [– – 〈out〉*] :}

where 〈arg〉, 〈val〉 and 〈out〉 are local names, and i is the number of 〈arg〉 names given.

The following ambiguous conditions exist when:

– a local name ends in “:”, “[”, “^”;

– a local name is a single non-alphabetic character;

– the text between {: and :} extends over more than one line;

– {: . . . :} is used more than once in a word.

Append the run-time semantics below.

Run-time: (x1 . . . xn --)

Create locals for 〈arg〉s and 〈val〉s. 〈out〉s are ignored.

〈arg〉 names are initialized from the data stack, with the top of the stack being assigned
to the right most 〈arg〉 name.

〈val〉 names are uninitialized.

〈val〉 and 〈arg〉 names have the execution semantics given below.

name Execution: (-- x)

Place the value currently assigned to name on the stack. An ambiguous condition exists
when name is executed while in interpretation state.

142 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 13. LOCAL Word Set

TO name Run-time: (x --)

Set name to the value x.

See: 2.2 Notation, 6.2.2405 VALUE, 6.2.2295 TO, A.13.6.2.2550 {:.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 143

14. MEMORY Word Set Forth 2012 RC1

14 The optional Memory-Allocation word set

14.1 Introduction

14.2 Additional terms and notation
None.

14.3 Additional usage requirements

14.3.1 I/O Results data type

I/O results are single-cell numbers indicating the result of I/O operations. A value of zero indicates that the
I/O operation completed successfully; other values and their meanings are implementation-defined.

Append table 14.1 to table 3.1.

Table 14.1: Data types
Symbol Data type Size on stack
ior I/O results 1 cell

14.3.2 Allocated regions

A program may address memory in data space regions made available by ALLOCATE or RESIZE and not
yet released by FREE.

See: 3.3.3 Data space.

14.4 Additional documentation requirements

14.4.1 System documentation

14.4.1.1 Implementation-defined options

– values and meaning of ior (14.3.1 I/O Results data type, 14.6.1.0707 ALLOCATE, 14.6.1.1605
FREE, 14.6.1.2145 RESIZE.

14.4.1.2 Ambiguous conditions

– no additional requirements.

14.4.1.3 Other system documentation

– no additional requirements.

14.4.2 Program documentation

– no additional requirements.

144 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 14. MEMORY Word Set

14.5 Compliance and labeling

14.5.1 Forth-2012 systems

The phrase “Providing the Memory-Allocation word set” shall be appended to the label of any Standard
System that provides all of the Memory-Allocation word set.

The phrase “Providing name(s) from the Memory-Allocation Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Memory-Allocation Extensions word set.

The phrase “Providing the Memory-Allocation Extensions word set” shall be appended to the label of any
Standard System that provides all of the Memory-Allocation and Memory-Allocation Extensions word
sets.

14.5.2 Forth-2012 programs

The phrase “Requiring the Memory-Allocation word set” shall be appended to the label of Standard Pro-
grams that require the system to provide the Memory-Allocation word set.

The phrase “Requiring name(s) from the Memory-Allocation Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Memory-Allocation
Extensions word set.

The phrase “Requiring the Memory-Allocation Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Memory-Allocation and Memory-Alloca-
tion Extensions word sets.

14.6 Glossary

14.6.1 Memory-Allocation words

14.6.1.0707 ALLOCATE MEMORY
(u -- a-addr ior)

Allocate u address units of contiguous data space. The data-space pointer is unaffected
by this operation. The initial content of the allocated space is undefined.

If the allocation succeeds, a-addr is the aligned starting address of the allocated space
and ior is zero.

If the operation fails, a-addr does not represent a valid address and ior is the implement-
ation-defined I/O result code.

See: 6.1.1650 HERE, 14.6.1.1605 FREE, 14.6.1.2145 RESIZE.

14.6.1.1605 FREE MEMORY
(a-addr -- ior)

Return the contiguous region of data space indicated by a-addr to the system for later
allocation. a-addr shall indicate a region of data space that was previously obtained by
ALLOCATE or RESIZE. The data-space pointer is unaffected by this operation.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 145

14. MEMORY Word Set Forth 2012 RC1

If the operation succeeds, ior is zero. If the operation fails, ior is the implementation-
defined I/O result code.

See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.2145 RESIZE.

14.6.1.2145 RESIZE MEMORY
(a-addr1 u -- a-addr2 ior)

Change the allocation of the contiguous data space starting at the address a-addr1, previ-
ously allocated by ALLOCATE or RESIZE, to u address units. u may be either larger or
smaller than the current size of the region. The data-space pointer is unaffected by this
operation.

If the operation succeeds, a-addr2 is the aligned starting address of u address units of
allocated memory and ior is zero. a-addr2 may be, but need not be, the same as a-addr1.
If they are not the same, the values contained in the region at a-addr1 are copied to a-
addr2, up to the minimum size of either of the two regions. If they are the same, the
values contained in the region are preserved to the minimum of u or the original size. If
a-addr2 is not the same as a-addr1, the region of memory at a-addr1 is returned to the
system according to the operation of FREE.

If the operation fails, a-addr2 equals a-addr1, the region of memory at a-addr1 is unaf-
fected, and ior is the implementation-defined I/O result code.

See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.1605 FREE.

14.6.2 Memory-Allocation extension words

None

146 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 15. TOOLS Word Set

15 The optional Programming-Tools word set

15.1 Introduction
This optional word set contains words most often used during the development of applications.

15.2 Additional terms and notation
None.

15.3 Additional usage requirements

15.3.1 The Forth dictionary

A program using the words CODE or ;CODE associated with assembler code has an environmental depend-
ency on that particular instruction set and assembler notation.

Programs using the words EDITOR or ASSEMBLER require the Search Order word set or an equivalent
implementation-defined capability.

See: 3.3 The Forth dictionary.

15.4 Additional documentation requirements

15.4.1 System documentation

15.4.1.1 Implementation-defined options

– ending sequence for input following 15.6.2.0470 ;CODE and 15.6.2.0930 CODE;

– manner of processing input following 15.6.2.0470 ;CODE and 15.6.2.0930 CODE;

– search-order capability for 15.6.2.1300 EDITOR and 15.6.2.0740 ASSEMBLER (15.3.1 The Forth
dictionary);

– source and format of display by 15.6.1.2194 SEE.

15.4.1.2 Ambiguous conditions

– deleting the compilation word-list (15.6.2.1580 FORGET);

– fewer than u+1 items on control-flow stack (15.6.2.1015 CS-PICK, 15.6.2.1020 CS-ROLL);

– name can’t be found (15.6.2.1580 FORGET, 15.6.2.2264 SYNONYM);

– name not defined via 6.1.1000 CREATE (15.6.2.0470 ;CODE);

– 6.1.2033 POSTPONE applied to 15.6.2.2532 [IF];

– reaching the end of the input source before matching 15.6.2.2531 [ELSE] or 15.6.2.2533 [THEN]
(15.6.2.2532 [IF]);

– removing a needed definition (15.6.2.1580 FORGET).

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 147

15. TOOLS Word Set Forth 2012 RC1

– 6.1.1710 IMMEDIATE is applied to a word defined by 15.6.2.2264 SYNONYM.

– 15.6.2.1940 NR> is used with data not stored by 15.6.2.1908 N>R.

15.4.1.3 Other system documentation

– no additional requirements.

15.4.2 Program documentation

15.4.2.1 Environmental dependencies

– using the words 15.6.2.0470 ;CODE or 15.6.2.0930 CODE.

15.4.2.2 Other program documentation

– no additional requirements.

15.5 Compliance and labeling

15.5.1 Forth-2012 systems

The phrase “Providing the Programming-Tools word set” shall be appended to the label of any Standard
System that provides all of the Programming-Tools word set.

The phrase “Providing name(s) from the Programming-Tools Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Programming-Tools Extensions word set.

The phrase “Providing the Programming-Tools Extensions word set” shall be appended to the label of any
Standard System that provides all of the Programming-Tools and Programming-Tools Extensions word
sets.

15.5.2 Forth-2012 programs

The phrase “Requiring the Programming-Tools word set” shall be appended to the label of Standard Pro-
grams that require the system to provide the Programming-Tools word set.

The phrase “Requiring name(s) from the Programming-Tools Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Programming-Tools
Extensions word set.

The phrase “Requiring the Programming-Tools Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Programming-Tools and Programming-
Tools Extensions word sets.

15.6 Glossary

15.6.1 Programming-Tools words

148 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 15. TOOLS Word Set

15.6.1.0220 .S “dot-s” TOOLS
(--)

Copy and display the values currently on the data stack. The format of the display is
implementation-dependent.

.S may be implemented using pictured numeric output words. Consequently, its use
may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions, A.15.6.1.0220 .S.

15.6.1.0600 ? “question” TOOLS
(a-addr --)

Display the value stored at a-addr.

? may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions.

15.6.1.1280 DUMP TOOLS
(addr u --)

Display the contents of u consecutive addresses starting at addr. The format of the
display is implementation dependent.

DUMP may be implemented using pictured numeric output words. Consequently, its use
may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions.

15.6.1.2194 SEE TOOLS
(“〈spaces〉name” --)

Display a human-readable representation of the named word’s definition. The source
of the representation (object-code decompilation, source block, etc.) and the particular
form of the display is implementation defined.

SEE may be implemented using pictured numeric output words. Consequently, its use
may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions, A.15.6.1.2194 SEE.

15.6.1.2465 WORDS TOOLS
(--)

List the definition names in the first word list of the search order. The format of the
display is implementation-dependent.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 149

15. TOOLS Word Set Forth 2012 RC1

WORDS may be implemented using pictured numeric output words. Consequently, its
use may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions, A.15.6.1.2465 WORDS.

15.6.2 Programming-Tools extension words

15.6.2.0470 ;CODE “semicolon-code” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: colon-sys --)

Append the run-time semantics below to the current definition. End the current defi-
nition, allow it to be found in the dictionary, and enter interpretation state, consuming
colon-sys.

Subsequent characters in the parse area typically represent source code in a programming
language, usually some form of assembly language. Those characters are processed in
an implementation-defined manner, generating the corresponding machine code. The
process continues, refilling the input buffer as needed, until an implementation-defined
ending sequence is processed.

Run-time: (--) (R: nest-sys --)

Replace the execution semantics of the most recent definition with the name execution
semantics given below. Return control to the calling definition specified by nest-sys. An
ambiguous condition exists if the most recent definition was not defined with CREATE
or a user-defined word that calls CREATE.

name Execution: (i×x -- j×x)

Perform the machine code sequence that was generated following ;CODE.

See: 6.1.1250 DOES>, A.15.6.2.0470 ;CODE.

15.6.2.0702 AHEAD TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (C: -- orig)

Put the location of a new unresolved forward reference orig onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete until orig is resolved (e.g., by THEN).

Run-time: (--)

Continue execution at the location specified by the resolution of orig.

150 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 15. TOOLS Word Set

15.6.2.0740 ASSEMBLER TOOLS EXT
(--)

Replace the first word list in the search order with the ASSEMBLER word list.

See: 16 The optional Search-Order word set.

15.6.2.0830 BYE TOOLS EXT
(--)

Return control to the host operating system, if any.

15.6.2.0930 CODE TOOLS EXT
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name, called a “code definition”, with the execution semantics defined below.

Subsequent characters in the parse area typically represent source code in a programming
language, usually some form of assembly language. Those characters are processed in
an implementation-defined manner, generating the corresponding machine code. The
process continues, refilling the input buffer as needed, until an implementation-defined
ending sequence is processed.

name Execution: (i×x -- j×x)

Execute the machine code sequence that was generated following CODE.

See: 3.4.1 Parsing, A.15.6.2.0930 CODE.

15.6.2.1015 CS-PICK “c-s-pick” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (C: destu . . . orig0 | dest0 -- destu . . . orig0 | dest0 destu) (S: u --)

Remove u. Copy destu to the top of the control-flow stack. An ambiguous condition
exists if there are less than u+1 items, each of which shall be an orig or dest, on the
control-flow stack before CS-PICK is executed.

If the control-flow stack is implemented using the data stack, u shall be the topmost item
on the data stack.

See: A.15.6.2.1015 CS-PICK.

15.6.2.1020 CS-ROLL “c-s-roll” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (C: origu | destu origu-1 | destu-1 . . . orig0 | dest0 -- origu-1 | destu-1 . . . orig0 | dest0
origu | destu) (S: u --)

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 151

15. TOOLS Word Set Forth 2012 RC1

Remove u. Rotate u+1 elements on top of the control-flow stack so that origu | destu is
on top of the control-flow stack. An ambiguous condition exists if there are less than u+1
items, each of which shall be an orig or dest, on the control-flow stack before CS-ROLL
is executed.

If the control-flow stack is implemented using the data stack, u shall be the topmost item
on the data stack.

See: A.15.6.2.1020 CS-ROLL.

15.6.2.1300 EDITOR TOOLS EXT
(--)

Replace the first word list in the search order with the EDITOR word list.

See: 16 The optional Search-Order word set.

15.6.2.1580 FORGET TOOLS EXT
(“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name, then delete
name from the dictionary along with all words added to the dictionary after name. An
ambiguous condition exists if name cannot be found.

If the Search-Order word set is present, FORGET searches the compilation word list. An
ambiguous condition exists if the compilation word list is deleted.

An ambiguous condition exists if FORGET removes a word required for correct execu-
tion. Note: This word is obsolescent and is included as a concession to existing imple-
mentations.

See: 3.4.1 Parsing, A.15.6.2.1580 FORGET.

15.6.2.1908 N>R “n-to-r” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (i×n +n --) (R: -- j×x +n)

Remove n+1 items from the data stack and store them for later retrieval by NR>. The
return stack may be used to store the data. Until this data has been retrieved by NR>:

– this data will not be overwritten by a subsequent invocation of N>R and

– a program may not access data placed on the return stack before the invocation of
N>R.

See: 15.6.2.1940 NR>, A.15.6.2.1908 N>R.

152 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 15. TOOLS Word Set

15.6.2.1940 NR> “n-r-from” TOOLS EXT
Interpretation: Interpretation semantics for this word are undefined.

Execution: (-- i×x +n) (R: j×x +n --)

Retrieve the items previously stored by an invocation of N>R. n is the number of items
placed on the data stack. It is an ambiguous condition if NR> is used with data not stored
by N>R.

See: 15.6.2.1908 N>R, A.15.6.2.1908 N>R.

15.6.2.2250 STATE TOOLS EXT
(-- a-addr)

Extend the semantics of 6.1.2250 STATE to allow ;CODE to change the value in STATE.
A program shall not directly alter the contents of STATE.

See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ;, 6.1.0670 ABORT,
6.1.2050 QUIT, 6.1.2250 STATE, 6.1.2500 [, 6.1.2540], 6.2.0455 :NONAME,
15.6.2.0470 ;CODE.

15.6.2.2264 SYNONYM TOOLS EXT
(“〈spaces〉newname” “〈spaces〉oldname” --)

For both strings skip leading space delimiters. Parse newname and oldname delimited
by a space. Create a definition for newname with the semantics defined below. Newname
may be the same as oldname; when looking up oldname, newname shall not be found.

An ambiguous conditions exists if oldname can not be found or IMMEDIATE is applied
to newname.

newname interpretation: (i×x -- j×x)
Perform the interpretation semantics of oldname.

newname compilation: (i×x -- j×x)
Perform the compilation semantics of oldname.

See: 6.1.1710 IMMEDIATE.

15.6.2.2530.30 [DEFINED] “bracket-defined” TOOLS EXT
Compilation: Perform the execution semantics given below.

Execution: (“〈spaces〉name . . . ” -- flag)

Skip leading space delimiters. Parse name delimited by a space. Return a true flag if
name is the name of a word that can be found (according to the rules in the system’s
FIND); otherwise return a false flag. [DEFINED] is an immediate word.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 153

15. TOOLS Word Set Forth 2012 RC1

15.6.2.2531 [ELSE] “bracket-else” TOOLS EXT
Compilation: Perform the execution semantics given below.

Execution: (“〈spaces〉name . . . ” --)

Skipping leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences of [IF] . . . [THEN] and [IF] . . . [ELSE] . . .
[THEN], until the word [THEN] has been parsed and discarded. If the parse area be-
comes exhausted, it is refilled as with REFILL. [ELSE] is an immediate word.

See: 3.4.1 Parsing, A.15.6.2.2531 [ELSE].

15.6.2.2532 [IF] “bracket-if” TOOLS EXT
Compilation: Perform the execution semantics given below.

Execution: (flag | flag “〈spaces〉name . . . ” --)

If flag is true, do nothing. Otherwise, skipping leading spaces, parse and discard space-
delimited words from the parse area, including nested occurrences of [IF] . . . [THEN]
and [IF] . . . [ELSE] . . . [THEN], until either the word [ELSE] or the word
[THEN] has been parsed and discarded. If the parse area becomes exhausted, it is
refilled as with REFILL. [IF] is an immediate word.

An ambiguous condition exists if [IF] is POSTPONEd, or if the end of the input buffer
is reached and cannot be refilled before the terminating [ELSE] or [THEN] is parsed.

See: 3.4.1 Parsing, A.15.6.2.2532 [IF].

15.6.2.2533 [THEN] “bracket-then” TOOLS EXT
Compilation: Perform the execution semantics given below.

Execution: (--)

Does nothing. [THEN] is an immediate word.

See: A.15.6.2.2533 [THEN].

15.6.2.2534 [UNDEFINED] “bracket-undefined” TOOLS EXT
Compilation: Perform the execution semantics given below.

Execution: (“〈spaces〉name . . . ” -- flag)

Skip leading space delimiters. Parse name delimited by a space. Return a false flag if
name is the name of a word that can be found (according to the rules in the system’s
FIND); otherwise return a true flag. [UNDEFINED] is an immediate word.

154 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 16. SEARCH Word Set

16 The optional Search-Order word set

16.1 Introduction

16.2 Additional terms and notation
compilation word list: The word list into which new definition names are placed.

search order: A list of word lists specifying the order in which the dictionary will be searched.

16.3 Additional usage requirements

16.3.1 Data types

Word list identifiers are implementation-dependent single-cell values that identify word lists.

Append table 16.1 to table 3.1.

Table 16.1: Data types
Symbol Data type Size on stack
wid word list identifiers 1 cell

See: 3.1 Data types, 3.4.2 Finding definition names, 3.4 The Forth text interpreter.

16.3.2 Environmental queries

Append table 16.2 to table 3.5.

See: 3.2.6 Environmental queries.

Table 16.2: Environmental Query Strings
String Value data type Constant? Meaning
WORDLISTS n yes maximum number of word lists usable in the

search order

16.3.3 Finding definition names

When searching a word list for a definition name, the system shall search each word list from its last
definition to its first. The search may encompass only a single word list, as with SEARCH-WORDLIST, or
all the word lists in the search order, as with the text interpreter and FIND.

Changing the search order shall only affect the subsequent finding of definition names in the dictionary. A
system with the Search-Order word set shall allow at least eight word lists in the search order.

An ambiguous condition exists if a program changes the compilation word list during the compilation of
a definition or before modification of the behavior of the most recently compiled definition with ;CODE,
DOES>, or IMMEDIATE.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 155

16. SEARCH Word Set Forth 2012 RC1

A program that requires more than eight word lists in the search order has an environmental dependency.

See: 3.4.2 Finding definition names.

16.3.4 Contiguous regions

The regions of data space produced by the operations described in 3.3.3.2 Contiguous regions may be
non-contiguous if WORDLIST is executed between allocations.

16.4 Additional documentation requirements

16.4.1 System documentation

16.4.1.1 Implementation-defined options

– maximum number of word lists in the search order (16.3.3 Finding definition names, 16.6.1.2197
SET-ORDER);

– minimum search order (16.6.1.2197 SET-ORDER, 16.6.2.1965 ONLY).

16.4.1.2 Ambiguous conditions

– changing the compilation word list (16.3.3 Finding definition names);

– search order empty (16.6.2.2037 PREVIOUS);

– too many word lists in search order (16.6.2.0715 ALSO).

16.4.1.3 Other system documentation

– no additional requirements.

16.4.2 Program documentation

16.4.2.1 Environmental dependencies

– requiring more than eight word-lists in the search order (16.3.3 Finding definition names).

16.4.2.2 Other program documentation

– no additional requirements.

16.5 Compliance and labeling

16.5.1 Forth-2012 systems

The phrase “Providing the Search-Order word set” shall be appended to the label of any Standard System
that provides all of the Search-Order word set.

The phrase “Providing name(s) from the Search-Order Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Search-Order Extensions word set.

The phrase “Providing the Search-Order Extensions word set” shall be appended to the label of any Stand-
ard System that provides all of the Search-Order and Search-Order Extensions word sets.

156 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 16. SEARCH Word Set

16.5.2 Forth-2012 programs

The phrase “Requiring the Search-Order word set” shall be appended to the label of Standard Programs
that require the system to provide the Search-Order word set.

The phrase “Requiring name(s) from the Search-Order Extensions word set” shall be appended to the label
of Standard Programs that require the system to provide portions of the Search-Order Extensions word set.

The phrase “Requiring the Search-Order Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Search-Order and Search-Order Extensions word
sets.

16.6 Glossary

16.6.1 Search-Order words

16.6.1.1180 DEFINITIONS SEARCH
(--)

Make the compilation word list the same as the first word list in the search order. Speci-
fies that the names of subsequent definitions will be placed in the compilation word list.
Subsequent changes in the search order will not affect the compilation word list.

See: 16.3.3 Finding definition names.

16.6.1.1550 FIND SEARCH
Extend the semantics of 6.1.1550 FIND to be:

(c-addr -- c-addr 0 | xt 1 | xt -1)

Find the definition named in the counted string at c-addr. If the definition is not found
after searching all the word lists in the search order, return c-addr and zero. If the defini-
tion is found, return xt. If the definition is immediate, also return one (1); otherwise also
return minus-one (-1). For a given string, the values returned by FIND while compiling
may differ from those returned while not compiling.

See: 3.4.2 Finding definition names, 6.1.0070 ’, 6.1.1550 FIND, 6.1.2033 POSTPONE,
6.1.2510 [’].

16.6.1.1595 FORTH-WORDLIST SEARCH
(-- wid)

Return wid, the identifier of the word list that includes all standard words provided by
the implementation. This word list is initially the compilation word list and is part of the
initial search order.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 157

16. SEARCH Word Set Forth 2012 RC1

16.6.1.1643 GET-CURRENT SEARCH
(-- wid)

Return wid, the identifier of the compilation word list.

16.6.1.1647 GET-ORDER SEARCH
(-- widn . . . wid1 n)

Returns the number of word lists n in the search order and the word list identifiers widn
. . . wid1 identifying these word lists. wid1 identifies the word list that is searched first,
and widn the word list that is searched last. The search order is unaffected.

16.6.1.2192 SEARCH-WORDLIST SEARCH
(c-addr u wid -- 0 | xt 1 | xt -1)

Find the definition identified by the string c-addr u in the word list identified by wid.
If the definition is not found, return zero. If the definition is found, return its execution
token xt and one (1) if the definition is immediate, minus-one (-1) otherwise.

See: A.16.6.1.2192 SEARCH-WORDLIST.

16.6.1.2195 SET-CURRENT SEARCH
(wid --)

Set the compilation word list to the word list identified by wid.

16.6.1.2197 SET-ORDER SEARCH
(widn . . . wid1 n --)

Set the search order to the word lists identified by widn . . . wid1. Subsequently, word list
wid1 will be searched first, and word list widn searched last. If n is zero, empty the search
order. If n is minus one, set the search order to the implementation-defined minimum
search order. The minimum search order shall include the words FORTH-WORDLIST
and SET-ORDER. A system shall allow n to be at least eight.

16.6.1.2460 WORDLIST SEARCH
(-- wid)

Create a new empty word list, returning its word list identifier wid. The new word list
may be returned from a pool of preallocated word lists or may be dynamically allocated
in data space. A system shall allow the creation of at least 8 new word lists in addition
to any provided as part of the system.

16.6.2 Search-Order extension words

158 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 16. SEARCH Word Set

16.6.2.0715 ALSO SEARCH EXT
(--)

Transform the search order consisting of widn, . . . wid2, wid1 (where wid1 is searched
first) into widn, . . . wid2, wid1, wid1. An ambiguous condition exists if there are too many
word lists in the search order.

16.6.2.1590 FORTH SEARCH EXT
(--)

Transform the search order consisting of widn, . . . wid2, wid1 (where wid1 is searched
first) into widn, . . . wid2, widFORTH-WORDLIST.

16.6.2.1965 ONLY SEARCH EXT
(--)

Set the search order to the implementation-defined minimum search order. The minimum
search order shall include the words FORTH-WORDLIST and SET-ORDER.

16.6.2.1985 ORDER SEARCH EXT
(--)

Display the word lists in the search order in their search order sequence, from first
searched to last searched. Also display the word list into which new definitions will
be placed. The display format is implementation dependent.

ORDER may be implemented using pictured numeric output words. Consequently, its
use may corrupt the transient region identified by #>.

See: 3.3.3.6 Other transient regions.

16.6.2.2037 PREVIOUS SEARCH EXT
(--)

Transform the search order consisting of widn, . . . wid2, wid1 (where wid1 is searched
first) into widn, . . . wid2. An ambiguous condition exists if the search order was empty
before PREVIOUS was executed.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 159

17. STRING Word Set Forth 2012 RC1

17 The optional String word set

17.1 Introduction

17.2 Additional terms and notation
None.

17.3 Additional usage requirements
None.

17.4 Additional documentation requirements

17.4.1 System documentation

17.4.1.1 Implementation-defined options

– no additional options.

17.4.1.2 Ambiguous conditions

– The substitution cannot be created (REPLACES);

– The name of a substitution contains the ‘%’ delimiter character (REPLACES);

– Result of a substitution is too long to fit into the given buffer (SUBSTITUTE and UNESCAPE);

– Source and destination buffers for SUBSTITUTE are the same.

17.4.1.3 Other system documentation

– no additional requirements.

17.4.2 Program documentation

17.4.2.1 Environmental dependencies

– no additional dependencies.

17.4.2.2 Other program documentation

– no additional requirements.

17.5 Compliance and labeling

17.5.1 Forth-2012 systems

The phrase “Providing the String word set” shall be appended to the label of any Standard System that
provides all of the String word set.

160 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 17. STRING Word Set

The phrase “Providing name(s) from the String Extensions word set” shall be appended to the label of any
Standard System that provides portions of the String Extensions word set.

The phrase “Providing the String Extensions word set” shall be appended to the label of any Standard
System that provides all of the String and String Extensions word sets.

17.5.2 Forth-2012 programs

The phrase “Requiring the String word set” shall be appended to the label of Standard Programs that require
the system to provide the String word set.

The phrase “Requiring name(s) from the String Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the String Extensions word set.

The phrase “Requiring the String Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the String and String Extensions word sets.

17.6 Glossary

17.6.1 String words

17.6.1.0170 -TRAILING “dash-trailing” STRING
(c-addr u1 -- c-addr u2)

If u1 is greater than zero, u2 is equal to u1 less the number of spaces at the end of the
character string specified by c-addr u1. If u1 is zero or the entire string consists of spaces,
u2 is zero.

17.6.1.0245 /STRING “slash-string” STRING
(c-addr1 u1 n -- c-addr2 u2)

Adjust the character string at c-addr1 by n characters. The resulting character string,
specified by c-addr2 u2, begins at c-addr1 plus n characters and is u1 minus n characters
long.

See: A.17.6.1.0245 /STRING.

17.6.1.0780 BLANK STRING
(c-addr u --)

If u is greater than zero, store the character value for space in u consecutive character
positions beginning at c-addr.

17.6.1.0910 CMOVE “c-move” STRING
(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters from the data space starting at c-
addr1 to that starting at c-addr2, proceeding character-by-character from lower addresses
to higher addresses.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 161

17. STRING Word Set Forth 2012 RC1

See: 17.6.1.0920 CMOVE>, A.17.6.1.0910 CMOVE.

17.6.1.0920 CMOVE> “c-move-up” STRING
(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters from the data space starting at
c-addr1 to that starting at c-addr2, proceeding character-by-character from higher ad-
dresses to lower addresses.

See: 17.6.1.0910 CMOVE, A.17.6.1.0920 CMOVE>.

17.6.1.0935 COMPARE STRING
(c-addr1 u1 c-addr2 u2 -- n)

Compare the string specified by c-addr1 u1 to the string specified by c-addr2 u2. The
strings are compared, beginning at the given addresses, character by character, up to the
length of the shorter string or until a difference is found. If the two strings are identical,
n is zero. If the two strings are identical up to the length of the shorter string, n is minus-
one (-1) if u1 is less than u2 and one (1) otherwise. If the two strings are not identical up
to the length of the shorter string, n is minus-one (-1) if the first non-matching character
in the string specified by c-addr1 u1 has a lesser numeric value than the corresponding
character in the string specified by c-addr2 u2 and one (1) otherwise.

17.6.1.2191 SEARCH STRING
(c-addr1 u1 c-addr2 u2 -- c-addr3 u3 flag)

Search the string specified by c-addr1 u1 for the string specified by c-addr2 u2. If flag is
true, a match was found at c-addr3 with u3 characters remaining. If flag is false there was
no match and c-addr3 is c-addr1 and u3 is u1.

17.6.1.2212 SLITERAL STRING
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (c-addr1 u --)

Append the run-time semantics given below to the current definition.

Run-time: (-- c-addr2 u)

Return c-addr2 u describing a string consisting of the characters specified by c-addr1 u
during compilation. A program shall not alter the returned string.

See: A.17.6.112.0 SLITERAL.

17.6.2 String extension words

162 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 17. STRING Word Set

17.6.2.2141 REPLACES STRING EXT
(c-addr1 u1 c-addr2 u2 --)

Set the string c-addr1 u1 as the text to substitute for the substitution named by c-addr2
u2. If the substitution does not exist it is created. The program may then reuse the buffer
c-addr1 u1 without affecting the definition of the substitution.

Ambiguous conditions occur as follows:

– The substitution cannot be created.

– The name of a substitution contains the ‘%’ delimiter character.

REPLACES may allot data space and create a definition. This breaks the contiguity of
the current region and is not allowed during compilation of a colon definition

See: 3.3.3.2 Contiguous regions, 3.4.5 Compilation, 17.6.2.2255 SUBSTITUTE.

17.6.2.2255 SUBSTITUTE STRING EXT
(c-addr1 u1 c-addr2 u2 -- c-addr2 u3 n)

Perform substitution on the string c-addr1 u1 placing the result at string c-addr2 u3, the
length of the resulting string. An ambiguous condition occurs if the resulting string
will not fit into c-addr2 u2 or if c-addr2 is the same as c-addr1. The return value n is
positive on success and indicates the number of substitutions made. A negative value for
n indicates that an error occurred, leaving c-addr2 u3 undefined. Negative values of n are
implementation defined except for values in table 9.1 THROW code assignments.

Substitution occurs left-to-right from the start of c-addr1 in one pass and is non-recursive.

When text of a potential substitution name, surrounded by ‘%’ (ASCII $25) delimiters is
encountered by SUBSTITUTE, the following occurs:

a) If the name is null, a single delimiter character is passed to the output, i.e., %% is
replaced by %. The current number of substitutions is not changed.

b) If the text is a valid substitution name acceptable to 17.6.2.2141 REPLACES, the
leading and trailing delimiter characters and the enclosed substitution name are re-
placed by the substitution text. The current number of substitutions is incremented.

c) If the text is not a valid substitution name, the name with leading and trailing de-
limiters is passed unchanged to the output. The current number of substitutions is
not changed.

d) Parsing of the input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the input string contains a single
delimiter, the residue is passed unchanged to the output.

See: 17.6.2.2141 REPLACES, 17.6.2.2375 UNESCAPE, A.17.6.255.0 SUBSTITUTE.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 163

17. STRING Word Set Forth 2012 RC1

17.6.2.2375 UNESCAPE STRING EXT
(c-addr1 u1 c-addr2 -- c-addr2 u2)

Replace each ‘%’ character in the input string c-addr1 u1 by two ‘%’ characters. The
output is represented by c-addr2 u2. The buffer at c-addr2 must be big enough to hold
the unescaped string. An ambiguous condition occurs if the resulting string will not fit
into the destination buffer (c-addr2).

See: 17.6.2.2255 SUBSTITUTE.

164 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 18. XCHAR Word Set

18 The optional Extended Characters wordset

18.1 Introduction
This wordset deals with variable width character encodings. It also works with fixed width encodings.

Since the standard specifies ASCII encoding for characters, only ASCII-compatible encodings may be
used. Because ASCII compatibility has so many benefits, most encodings actually are ASCII compatible.
The characters beyond the ASCII encoding are called “extended characters” (xchars).

All words dealing with strings shall handle xchars when the xchar wordset is present. This includes dic-
tionary definitions, so the dictionary entries should not use bit 8 for other purposes. White space parsing
does not have to treat code points greater than $20 as white space.

18.2 Additional terms and notation

18.2.1 Definition of Terms

code point: A member of an extended character set.

18.2.2 Parsed-text notation

Append table 18.1 to table 2.1.

Table 18.1: Parsed text abbreviations
Abbreviation Description
〈xchar〉 the delimiting extended character

See: 2.2.3 Parsed-text notation.

18.3 Additional usage requirements

18.3.1 Data types

Append table 18.2 to table 3.1.

Table 18.2: Data Types
Symbol Data type Size on stack
pchar primitive character 1 cell
xchar extended character 1 cell
xc-addr xchar-aligned address 1 cell

See: 3.1 Data types.

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 165

18. XCHAR Word Set Forth 2012 RC1

18.3.1.1 Extended Characters

An extended character (xchar) is the code point of a character within an extended character set; on the stack
it is a subset of u. Extended characters are stored in memory encoded as one or more primitive characters
(pchars).

18.3.2 Environmental queries

Append table 18.3 to table 3.5.

Table 18.3: Environmental Query Strings
String Value data type Constant? Meaning
XCHAR-ENCODING c-addr u no Returns a printable ASCII string that rep-

resents the encoding, and use the preferred
MIME name (if any) or the name in the
IANA character-set register1 (RFC-1700)
such as “ISO-LATIN-1” or “UTF-8”,
with the exception of “ASCII”, where the
alias “ASCII” is preferred.

MAX-XCHAR u no Maximal value for xchar
XCHAR-MAXMEM u no Maximal memory consumed by an xchar in

address units

1 http://www.iana.org/assignments/character-sets

See: 3.2.6 Environmental queries.

18.3.3 Common encodings

Input and files are often encoded iso–latin–1 or utf–8. The encoding depends on settings of the computer
system such as the LANG environment variable on Unix. You can use the system consistently only when
you do not change the encoding, or only use the ASCII subset. The typical practice in environments
requiring more than one encoding is that the base system is ASCII only, and the character set is then
extended to specify the required encoding.

18.3.4 The Forth text interpreter

In section 3.4.1.3 Text interpreter input number conversion, 〈cnum〉 should be redefined to be:

〈cnum〉 the number is the value of 〈xchar〉

18.4 Additional documentation requirements

18.4.1 System documentation

18.4.1.1 Implementation-defined options

Terminal string IO like TYPE and ACCEPT also are extended to work with xchars in the string. Since
Unicode input and display poses a number of challenges like input method editors for different languages,

166 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

http://www.iana.org/assignments/character-sets

Forth 2012 RC1 18. XCHAR Word Set

left-to-right and right-to-left writing, and most fonts contain only a subset of Unicode glyphs, systems
should document their capabilities. File IO and in-memory string handling should work transparently with
xchars.

18.4.1.2 Ambiguous conditions

– the data in memory does not encode a valid xchar (18.6.1.2486.50 X-SIZE);

– the xchar value is outside the range of allowed code points of the current character set used.

– words improperly used outside 6.1.0490 <# and 6.1.0040 #> (18.6.2.2488.20 XHOLD).

18.4.1.3 Other system documentation

– no additional requirements.

18.4.2 Program documentation

– no additional requirements.

18.5 Compliance and labeling

18.5.1 Forth-2012 systems

The phrase “Providing the Extended Character word set” shall be appended to the label of any Standard
System that provides all of the Extended Character word set.

The phrase “Providing name(s) from the Extended Character Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Extended Character Extensions word set.

The phrase “Providing the Extended Character Extensions word set” shall be appended to the label of any
Standard System that provides all of the Extended Character and Extended Character Extensions word sets.

18.5.2 Forth-2012 programs

The phrase “Requiring the Extended Character word set” shall be appended to the label of Standard Pro-
grams that require the system to provide the Extended Character word set.

The phrase “Requiring name(s) from the Extended Character Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Extended Character
Extensions word set.

The phrase “Requiring the Extended Character Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Extended Character Exception and Extended
Character Extensions word sets.

18.6 Glossary

18.6.1 Extended Character words

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 167

18. XCHAR Word Set Forth 2012 RC1

18.6.1.2486.50 X-SIZE XCHAR
(xc-addr u1 -- u2)

u2 is the number of pchars used to encode the first xchar stored in the string xc-addr u1.
To calculate the size of the xchar, only the bytes inside the buffer may be accessed. An
ambiguous condition exists if the xchar is incomplete or malformed.

18.6.1.2487.10 XC!+ “x-c-store-plus” XCHAR
(xchar xc-addr1 -- xc-addr2)

Stores the xchar at xc-addr1. xc-addr2 points to the first memory location after the stored
xchar.

18.6.1.2487.15 XC!+? “x-c-store-plus-query” XCHAR
(xchar xc-addr1 u1 -- xc-addr2 u2 flag)

Stores the xchar into the string buffer specified by xc-addr1 u1. xc-addr2 u2 is the remain-
ing string buffer. If the xchar did fit into the buffer, flag is true, otherwise flag is false,
and xc-addr2 u2 equal xc-addr1 u1. XC!+? is safe for buffer overflows.

18.6.1.2487.20 XC, “x-c-comma” XCHAR
(xchar --)

Append the encoding of xchar to the dictionary.

See: 6.1.0860 C,.

18.6.1.2487.25 XC-SIZE “x-c-size” XCHAR
(xchar -- u)

u is the number of pchars used to encode xchar in memory.

18.6.1.2487.35 XC@+ “x-c-fetch-plus” XCHAR
(xc-addr1 -- xc-addr2 xchar)

Fetches the xchar at xc-addr1. xc-addr2 points to the first memory location after the
retrieved xchar.

18.6.1.2487.40 XCHAR+ “x-char-plus” XCHAR
(xc-addr1 -- xc-addr2)

Adds the size of the xchar stored at xc-addr1 to this address, giving xc-addr2.

168 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 18. XCHAR Word Set

18.6.1.2488.10 XEMIT “x-emit” XCHAR
(xchar --)

Prints an xchar on the terminal.

See: 6.1.1320 EMIT

18.6.1.2488.30 XKEY “x-key” XCHAR
(-- xchar)

Reads an xchar from the terminal. This will discard all input events up to the completion
of the xchar.

See: 6.1.1750 KEY.

18.6.1.2488.35 XKEY? “x-key-query” XCHAR
(-- flag)

Flag is true when it’s possible to do XKEY without blocking. Subsequent KEY?, KEY,
EKEY?, and EKEY may be affected by XKEY?.

See: 10.6.1.1755 KEY?.

18.6.2 Extended Character extension words

18.6.2.0145 +X/STRING “plus-x-string” XCHAR EXT
(xc-addr1 u1 -- xc-addr2 u2)

Step forward by one xchar in the buffer defined by xc-addr1 u1. xc-addr2 u2 is the re-
maining buffer after stepping over the first xchar in the buffer.

18.6.2.0175 -TRAILING-GARBAGE “minus-trailing-garbage” XCHAR EXT
(xc-addr u1 -- xc-addr u2)

Examine the last xchar in the string xc-addr u1 — if the encoding is correct and it rep-
resents a full xchar, u2 equals u1, otherwise, u2 represents the string without the last
(garbled) xchar. -TRAILING-GARBAGE does not change this garbled xchar.

18.6.2.0895 CHAR XCHAR EXT
(“〈spaces〉name” -- xchar)

Skip leading space delimiters. Parse name delimited by a space. Put the value of its first
xchar onto the stack.

See: 6.1.0895 CHAR

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 169

18. XCHAR Word Set Forth 2012 RC1

18.6.2.1306.60 EKEY>XCHAR “e-key-to-x-char” XCHAR EXT
(x -- xchar true | x false)

If the keyboard event x corresponds to an xchar, return the xchar and true. Otherwise,
return x and false.

See: 10.6.2.1305 EKEY, 10.6.2.1306 EKEY>CHAR, 10.6.2.1306.40 EKEY>FKEY.

18.6.2.2008 PARSE XCHAR EXT
(xchar “ccc〈xchar〉” -- c-addr u)

Parse ccc in the input stream delimited by xchar.

c-addr is the address (within the input buffer) and u is the length of the parsed string. If
the parse area was empty, the resulting string has a zero length.

See: 3.4.1 Parsing, 6.2.2008 PARSE, A.6.2.2008 PARSE.

18.6.2.2486.70 X-WIDTH XCHAR EXT
(xc-addr u -- n)

n is the number of monospace ASCII characters that take the same space to display as the
xchar string xc-addr u; assuming a monospaced display font, i.e., xchar width is always
an integer multiple of the width of an ASCII character.

18.6.2.2487.30 XC-WIDTH “x-c-width” XCHAR EXT
(xchar -- n)

n is the number of monospace ASCII characters that take the same space to display as
the xchar; i.e., xchar width is always an integer multiple of the width of an ASCII char.

18.6.2.2487.45 XCHAR- “x-char-minus” XCHAR EXT
(xc-addr1 -- xc-addr2)

Goes backward from xc-addr1 until it finds an xchar so that the size of this xchar added
to xc-addr2 gives xc-addr1. There is an ambiguous condition when the encoding doesn’t
permit reliable backward stepping through the text.

18.6.2.2488.20 XHOLD “x-hold” XCHAR EXT
(xchar --)

Adds xchar to the picture numeric output string. An ambiguous condition exists if
XHOLD executes outside of a <# #> delimited number conversion.

See: 6.1.1670 HOLD.

170 ! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~

Forth 2012 RC1 18. XCHAR Word Set

18.6.2.2495 X\STRING- “x-string-minus” XCHAR EXT
(xc-addr u1 -- xc-addr u2)

Search for the penultimate xchar in the string xc-addr u1. The string xc-addr u2 contains
all xchars of xc-addr u1, but the last. Unlike XCHAR-, X\STRING- can be implemented
in encodings where xchar boundaries can only reliably detected when scanning in for-
ward direction.

18.6.2.2520 [CHAR] “bracket-char” XCHAR EXT
Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“〈spaces〉name” --)

Skip leading space delimiters. Parse name delimited by a space. Append the run-time
semantics given below to the current definition.

Run-time: (-- xchar)

Place xchar, the value of the first xchar of name, on the stack.

See: 6.1.2520 [CHAR]

! “ # $ % & ’ () * + , - . / digits : ; < = > ? @ ALPHA [\] ˆ _ ‘ alpha { | } ~ 171

A. Rationale Forth 2012 RC1

Annex A
(informative)
Rationale

A.1 Introduction

A.1.1 Purpose

A.1.2 Scope

When judging relative merits, the members of the Committee were guided by the following goals (listed in
alphabetic order):

Consistency The Standard provides a functionally complete set of words with minimal func-
tional overlap.

Cost of compliance This goal includes such issues as common practice, how much existing code
would be broken by the proposed change, and the amount of effort required to
bring existing applications and systems into conformity with the Standard.

Efficiency Execution speed, memory compactness.

Portability Words chosen for inclusion should be free of system-dependent features.

Readability Forth definition names should clearly delineate their behavior. That behavior
should have an apparent simplicity which supports rapid understanding. Forth
should be easily taught and support readily maintained code.

Utility Be judged to have sufficiently essential functionality and frequency of use to be
deemed suitable for inclusion.

A.1.3 Document organization

A.2 Terms and notation

A.2.1 Definitions of terms

ambiguous condition

The response of a Standard System to an ambiguous condition is left to the discretion of the im-
plementor. A Standard System need not explicitly detect or report the occurrence of ambiguous
conditions.

cross compiler

Cross compilers may be used to prepare a program for execution in an embedded system, or may be
used to generate Forth kernels either for the same or a different run-time environment.

data field

In earlier standards, data fields were known as “parameter fields”.

172

Forth 2012 RC1 A. Rationale

On subroutine threaded Forth systems, everything is object code. There are no traditional code or
data fields. Only a word defined by CREATE or by a word that calls CREATE has a data field. Only
a data field defined via CREATE can be manipulated portably.

word set

This Standard recognizes that some functions, while useful in certain application areas, are not suf-
ficiently general to justify requiring them in all Forth systems. Further, it is helpful to group Forth
words according to related functions. These issues are dealt with using the concept of word sets.

The “Core” word set contains the essential body of words in a Forth system. It is the only “required”
word set. Other word sets defined in this Standard are optional additions to make it possible to
provide Standard Systems with tailored levels of functionality.

A.2.2 Notation

A.2.2.2 Stack notation

The use of -sys, orig, and dest data types in stack effect diagrams conveys two pieces of information.
First, it warns the reader that many implementations use the data stack in unspecified ways for those
purposes, so that items underneath on either the control-flow or data stacks are unavailable. Second, in
cases where orig and dest are used, explicit pairing rules are documented on the assumption that all systems
will implement that model so that its results are equivalent to employment of some stack, and that in fact
many implementations do use the data stack for this purpose. However, nothing in this Standard requires
that implementations actually employ the data stack (or any other) for this purpose so long as the implied
behavior of the model is maintained.

A.3 Usage requirements
Forth systems are unusually simple to develop, in comparison with compilers for more conventional lan-
guages such as C. In addition to Forth systems supported by vendors, public-domain implementations and
implementation guides have been widely available for nearly twenty years, and a large number of individ-
uals have developed their own Forth systems. As a result, a variety of implementation approaches have
developed, each optimized for a particular platform or target market.

The Committee has endeavored to accommodate this diversity by constraining implementors as little as
possible, consistent with a goal of defining a standard interface between an underlying Forth System and
an application program being developed on it.

Similarly, we will not undertake in this section to tell you how to implement a Forth System, but rather
will provide some guidance as to what the minimum requirements are for systems that can properly claim
compliance with this Standard.

A.3.1 Data types

Most computers deal with arbitrary bit patterns. There is no way to determine by inspection whether a cell
contains an address or an unsigned integer. The only meaning a datum possesses is the meaning assigned
by an application.

When data are operated upon, the meaning of the result depends on the meaning assigned to the input
values. Some combinations of input values produce meaningless results: for instance, what meaning can

173

A. Rationale Forth 2012 RC1

be assigned to the arithmetic sum of the ASCII representation of the character “A” and a TRUE flag?
The answer may be “no meaning”; or alternatively, that operation might be the first step in producing a
checksum. Context is the determiner.

The discipline of circumscribing meaning which a program may assign to various combinations of bit
patterns is sometimes called data typing. Many computer languages impose explicit data typing and have
compilers that prevent ill-defined operations.

Forth rarely explicitly imposes data-type restrictions. Still, data types implicitly do exist, and discipline is
required, particularly if portability of programs is a goal. In Forth, it is incumbent upon the programmer
(rather than the compiler) to determine that data are accurately typed.

This section attempts to offer guidance regarding de facto data typing in Forth.

A.3.1.2 Character types

The correct identification and proper manipulation of the character data type is beyond the purview of
Forth’s enforcement of data type by means of stack depth. Characters do not necessarily occupy the entire
width of their single stack entry with meaningful data. While the distinction between signed and unsigned
character is entirely absent from the formal specification of Forth, the tendency in practice is to treat
characters as short positive integers when mathematical operations come into play.

a) Standard Character Set

1) The storage unit for the character data type (C@, C!, FILL, etc.) must be able to contain
unsigned numbers from 0 through 255.

2) An implementation is not required to restrict character storage to that range, but a Standard Pro-
gram without environmental dependencies cannot assume the ability to store numbers outside
that range in a “char” location.

3) The allowed number representations are two’s-complement, one’s-complement, and signed-
magnitude. Note that all of these number systems agree on the representation of positive num-
bers.

4) Since a “char” can store small positive numbers and since the character data type is a sub-
range of the unsigned integer data type, C! must store the n least-significant bits of a cell
(8 <= n <= bits/cell). Given the enumeration of allowed number representations and their
known encodings, “TRUE xx C! xx C@” must leave a stack item with some number of bits set,
which will thus will be accepted as non-zero by IF.

5) For the purposes of input (KEY, ACCEPT, etc.) and output (EMIT, TYPE, etc.), the encoding
between numbers and human-readable symbols is ISO646/IRV (ASCII) within the range from
32 to 126 (space to ~). EBCDIC is out (most “EBCDIC” computer systems support ASCII too).
Outside that range, it is up to the implementation. The obvious implementation choice is to use
ASCII control characters for the range from 0 to 31, at least for the “displayable” characters
in that range (TAB, RETURN, LINEFEED, FORMFEED). However, this is not as clear-cut
as it may seem, because of the variation between operating systems on the treatment of those
characters. For example, some systems TAB to 4 character boundaries, others to 8 character
boundaries, and others to preset tab stops. Some systems perform an automatic linefeed after

174

Forth 2012 RC1 A. Rationale

a carriage return, others perform an automatic carriage return after a linefeed, and others do
neither.

The codes from 128 to 255 may eventually be standardized, either formally or informally,
for use as international characters, such as the letters with diacritical marks found in many
European languages. One such encoding is the 8-bit ISO Latin-1 character set. The computer
marketplace at large will eventually decide which encoding set of those characters prevails. For
Forth implementations running under an operating system (the majority of those running on
standard platforms these days), most Forth implementors will probably choose to do whatever
the system does, without performing any remapping within the domain of the Forth system
itself.

6) A Standard Program can depend on the ability to receive any character in the range 32 . . .
126 through KEY, and similarly to display the same set of characters with EMIT. If a program
must be able to receive or display any particular character outside that range, it can declare an
environmental dependency on the ability to receive or display that character.

7) A Standard Program cannot use control characters in definition names. However, a Standard
System is not required to enforce this prohibition. Thus, existing systems that currently allow
control characters in words names from BLOCK source may continue to allow them, and pro-
grams running on those systems will continue to work. In text file source, the parsing action
with space as a delimiter (e.g., BL WORD) treats control characters the same as spaces. This
effectively implies that you cannot use control characters in definition names from text-file
source, since the text interpreter will treat the control characters as delimiters. Note that this
“control-character folding” applies only when space is the delimiter, thus the phrase “CHAR)
WORD” may collect a string containing control characters.

b) Storage and retrieval

Characters are transferred from the data stack to memory by C! and from memory to the data stack
by C@. A number of lower-significance bits equivalent to the implementation-dependent width of a
character are transferred from a popped data stack entry to an address by the action of C! without
affecting any bits which may comprise the higher-significance portion of the cell at the destination
address; however, the action of C@ clears all higher-significance bits of the data stack entry which
it pushes that are beyond the implementation-dependent width of a character (which may include
implementation-defined display information in the higher-significance bits). The programmer should
keep in mind that operating upon arbitrary stack entries with words intended for the character data
type may result in truncation of such data.

c) Manipulation on the stack

In addition to C@ and C!, characters are moved to, from and upon the data stack by the following
words:

>R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

d) Additional operations

The following mathematical operators are valid for character data:

+ - * / /MOD MOD

175

A. Rationale Forth 2012 RC1

The following comparison and bitwise operators may be valid for characters, keeping in mind that
display information cached in the most significant bits of characters in an implementation-defined
fashion may have to be masked or otherwise dealt with:

AND OR > < U> U< = <> 0= 0<> MAX MIN LSHIFT RSHIFT

A.3.1.3 Single-cell types

A single-cell stack entry viewed without regard to typing is the fundamental data type of Forth. All other
data types are actually represented by one or more single-cell stack entries.

a) Storage and retrieval

Single-cell data are transferred from the stack to memory by !; from memory to the stack by @. All
bits are transferred in both directions and no type checking of any sort is performed, nor does the
Standard System check that a memory address used by ! or @ is properly aligned or properly sized
to hold the datum thus transferred.

b) Manipulation on the stack

Here is a selection of the most important words which move single-cell data to, from and upon the
data stack:

! @ >R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

c) Comparison operators

The following comparison operators are universally valid for one or more single cells:

= <> 0= 0<>

A.3.1.3.1 Flags

A FALSE flag is a single-cell datum with all bits unset, and a TRUE flag is a single-cell datum with all bits
set. While Forth words which test flags accept any non-null bit pattern as true, there exists the concept of
the well-formed flag. If an operation whose result is to be used as a flag may produce any bit-mask other
than TRUE or FALSE, the recommended discipline is to convert the result to a well-formed flag by means
of the Forth word 0<> so that the result of any subsequent logical operations on the flag will be predictable.

In addition to the words which move, fetch and store single-cell items, the following words are valid for
operations on one or more flag data residing on the data stack:

AND OR XOR INVERT

A.3.1.3.2 Integers

A single-cell datum may be treated by a Standard Program as a signed integer. Moving and storing such
data is performed as for any single-cell data. In addition to the universally-applicable operators for single-
cell data specified above, the following mathematical and comparison operators are valid for single-cell
signed integers:

* */ */MOD /MOD MOD + +! - / 1+ 1- ABS MAX MIN NEGATE 0< 0> < >

176

Forth 2012 RC1 A. Rationale

Given the same number of bits, unsigned integers usually represent twice the number of absolute values
representable by signed integers.

A single-cell datum may be treated by a Standard Program as an unsigned integer. Moving and storing
such data is performed as for any single-cell data. In addition, the following mathematical and comparison
operators are valid for single-cell unsigned integers:

UM* UM/MOD + +! - 1+ 1- * U< U>

A.3.1.3.3 Addresses

An address is uniquely represented as a single cell unsigned number and can be treated as such when being
moved to, from, or upon the stack. Conversely, each unsigned number represents a unique address (which
is not necessarily an address of accessible memory). This one-to-one relationship between addresses and
unsigned numbers forces an equivalence between address arithmetic and the corresponding operations on
unsigned numbers.

Several operators are provided specifically for address arithmetic:

CHAR+ CHARS CELL+ CELLS

and, if the floating-point word set is present:

FLOAT+ FLOATS SFLOAT+ SFLOATS DFLOAT+ DFLOATS

A Standard Program may never assume a particular correspondence between a Forth address and the phys-
ical address to which it is mapped.

A.3.1.3.4 Counted strings

Forth 94 moved toward the consistent use of the “c-addr u” representation of strings on the stack. The use
of the alternate “address of counted string” stack representation is discouraged. The traditional Forth words
WORD and FIND continue to use the “address of counted string” representation for historical reasons. The
new word C", added as a porting aid for existing programs, also uses the counted string representation.

Counted strings remain useful as a way to store strings in memory. This use is not discouraged, but when
references to such strings appear on the stack, it is preferable to use the “c-addr u” representation.

A.3.1.3.5 Execution tokens

The association between an execution token and a definition is static. Once made, it does not change with
changes in the search order or anything else. However it may not be unique, e.g., the phrases

’ 1+ and
’ CHAR+

might return the same value.

177

A. Rationale Forth 2012 RC1

A.3.1.4 Cell-pair types

a) Storage and retrieval

Two operators are provided to fetch and store cell pairs:

2@ 2!

b) Manipulation on the stack

Additionally, these operators may be used to move cell pairs from, to and upon the stack:

2>R 2DROP 2DUP 2OVER 2R> 2SWAP 2ROT

c) Comparison

The following comparison operations are universally valid for cell pairs:

D= D0=

A.3.1.4.1 Double-Cell Integers

If a double-cell integer is to be treated as signed, the following comparison and mathematical operations
are valid:

D+ D- D< D0< DABS DMAX DMIN DNEGATE M*/ M+

If a double-cell integer is to be treated as unsigned, the following comparison and mathematical operations
are valid:

D+ D- UM/MOD DU<

A.3.1.4.2 Character strings

See: A.3.1.3.4 Counted strings.

A.3.2 The Implementation environment

A.3.2.1 Numbers

Traditionally, Forth has been implemented on two’s-complement machines where there is a one-to-one
mapping of signed numbers to unsigned numbers — any single cell item can be viewed either as a signed
or unsigned number. Indeed, the signed representation of any positive number is identical to the equivalent
unsigned representation. Further, addresses are treated as unsigned numbers: there is no distinct pointer
type. Arithmetic ordering on two’s complement machines allows + and - to work on both signed and
unsigned numbers. This arithmetic behavior is deeply embedded in common Forth practice.

As a consequence of these behaviors, the likely ranges of signed and unsigned numbers for implementations
hosted on each of the permissible arithmetic architectures is:

178

Forth 2012 RC1 A. Rationale

Arithmetic architecture signed numbers unsigned numbers
Two’s complement −n−1 to n 0 to 2n+1
One’s complement −n to n 0 to n
Signed magnitude −n to n 0 to n

where n is the largest positive signed number. For all three architectures, signed numbers in the 0 to
n range are bitwise identical to the corresponding unsigned number. Note that unsigned numbers on a
signed magnitude machine are equivalent to signed non-negative numbers as a consequence of the forced
correspondence between addresses and unsigned numbers and of the required behavior of + and -.

For reference, these number representations may be defined by the way that NEGATE is implemented:

two’s complement: : NEGATE INVERT 1+ ;
one’s complement: : NEGATE INVERT ;
signed-magnitude: : NEGATE HIGH-BIT XOR ;

where HIGH-BIT is a bit mask with only the most-significant bit set. Note that all of these number systems
agree on the representation of non-negative numbers.

Per 3.2.1.1 Internal number representation and 6.1.0270 0=, the implementor must ensure that no stand-
ard or supported word return negative zero for any numeric (non-Boolean or flag) result. Many existing
programmer assumptions will be violated otherwise.

There is no requirement to implement circular unsigned arithmetic, nor to set the range of unsigned num-
bers to the full size of a cell. There is historical precedent for limiting the range of u to that of +n, which
is permissible when the cell size is greater than 16 bits.

A.3.2.1.2 Digit conversion

For example, an implementation might convert the characters “a” through “z” identically to the characters
“A” through “Z”, or it might treat the characters “ [” through “˜” as additional digits with decimal values
36 through 71, respectively.

A.3.2.2 Arithmetic

A.3.2.2.1 Integer division

The Forth-79 Standard specifies that the signed division operators (/, /MOD, MOD, */MOD, and */) round
non-integer quotients towards zero (symmetric division). Forth 83 changed the semantics of these operators
to round towards negative infinity (floored division). Some in the Forth community have declined to convert
systems and applications from the Forth-79 to the Forth-83 divide. To resolve this issue, a Forth-2012
system is permitted to supply either floored or symmetric operators. In addition, a standard system must
provide a floored division primitive (FM/MOD), a symmetric division primitive (SM/REM), and a mixed
precision multiplication operator (M*).

This compromise protects the investment made in current Forth applications; Forth-79 and Forth-83 pro-
grams are automatically compliant with Forth 94 with respect to division. In practice, the rounding direc-
tion rarely matters to applications. However, if a program requires a specific rounding direction, it can use
the floored division primitive FM/MOD or the symmetric division primitive SM/REM to construct a divi-

179

A. Rationale Forth 2012 RC1

sion operator of the desired flavor. This simple technique can be used to convert Forth-79 and Forth-83
programs to Forth 94 without any analysis of the original programs.

A.3.2.2.2 Other integer operations

Whether underflow occurs depends on the data-type of the result. For example, the phrase 1 2 - under-
flows if the result is unsigned and produces the valid signed result -1.

A.3.2.3 Stacks

The only data type in Forth which has concrete rather than abstract existence is the stack entry. Even this
primitive typing Forth only enforces by the hard reality of stack underflow or overflow. The programmer
must have a clear idea of the number of stack entries to be consumed by the execution of a word and the
number of entries that will be pushed back to a stack by the execution of a word. The observation of
anomalous occurrences on the data stack is the first line of defense whereby the programmer may recog-
nize errors in an application program. It is also worth remembering that multiple stack errors caused by
erroneous application code are frequently of equal and opposite magnitude, causing complementary (and
deceptive) results.

For these reasons and a host of other reasons, the one unambiguous, uncontroversial, and indispensable
programming discipline observed since the earliest days of Forth is that of providing a stack diagram for
all additions to the application dictionary with the exception of static constructs such as VARIABLEs and
CONSTANTs.

A.3.2.3.2 Control-flow stack The simplest use of control-flow words is to implement the basic control
structures shown in figure A.1.

Figure A.1: The basic control-flow patterns

In control flow every branch, or transfer of control, must terminate at some destination. A natural im-
plementation uses a stack to remember the origin of forward branches and the destination of backward
branches. At a minimum, only the location of each origin or destination must be indicated, although other
implementation-dependent information also may be maintained.

An origin is the location of the branch itself. A destination is where control would continue if the branch
were taken. A destination is needed to resolve the branch address for each origin, and conversely, if every
control-flow path is completed no unused destinations can remain.

180

Forth 2012 RC1 A. Rationale

With the addition of just three words (AHEAD, CS-ROLL and CS-PICK), the basic control-flow words
supply the primitives necessary to compile a variety of transportable control structures. The abilities re-
quired are compilation of forward and backward conditional and unconditional branches and compile-time
management of branch origins and destinations. Table A.1 shows the desired behavior.

Table A.1: Compilation behavior of control-flow words
at compile time,
word: supplies: resolves: is used to:
IF orig mark origin of forward conditional branch
THEN orig resolve IF or AHEAD
BEGIN dest mark backward destination
AGAIN dest resolve with backward unconditional branch
UNTIL dest resolve with backward conditional branch
AHEAD orig mark origin of forward unconditional branch
CS-PICK copy item on control-flow stack
CS-ROLL reorder items on control-flow stack

The requirement that control-flow words are properly balanced by other control-flow words makes reason-
able the description of a compile-time implementation-defined control-flow stack. There is no prescription
as to how the control-flow stack is implemented, e.g., data stack, linked list, special array. Each element of
the control-flow stack mentioned above is the same size.

With these tools, the remaining basic control-structure elements, shown in figure A.2, can be defined. The
stack notation used here for immediate words is (compilation / execution).

: WHILE (dest -- orig dest / flag --)
\ conditional exit from loops
POSTPONE IF \ conditional forward brach
1 CS-ROLL \ keep dest on top

; IMMEDIATE

: REPEAT (orig dest -- / --)
\ resolve a single WHILE and return to BEGIN
POSTPONE AGAIN \ uncond. backward branch to dest
POSTPONE THEN \ resolve forward branch from orig

; IMMEDIATE

: ELSE (orig1 -- orig2 / --)
\ resolve IF supplying alternate execution
POSTPONE AHEAD \ unconditional forward branch orig2
1 CS-ROLL \ put orig1 back on top
POSTPONE THEN \ resolve forward branch from orig1

; IMMEDIATE

Forth control flow provides a solution for well-known problems with strictly structured programming.

The basic control structures can be supplemented, as shown in the examples in figure A.3, with additional

181

A. Rationale Forth 2012 RC1

Figure A.2: Additional basic control-flow patterns

WHILEs in BEGIN . . . UNTIL and BEGIN . . . WHILE . . . REPEAT structures. However, for each
additional WHILE there must be a THEN at the end of the structure. THEN completes the syntax with
WHILE and indicates where to continue execution when the WHILE transfers control. The use of more
than one additional WHILE is possible but not common. Note that if the user finds this use of THEN
undesirable, an alias with a more likable name could be defined.

Additional actions may be performed between the control flow word (the REPEAT or UNTIL) and the
THEN that matches the additional WHILE. Further, if additional actions are desired for normal termination
and early termination, the alternative actions may be separated by the ordinary Forth ELSE. The termination
actions are all specified after the body of the loop.

Note that REPEAT creates an anomaly when matching the WHILEwith ELSE or THEN, most notably when
compared with the BEGIN. . .UNTIL case. That is, there will be one less ELSE or THEN than there are
WHILEs because REPEAT resolves one THEN. As above, if the user finds this count mismatch undesirable,
REPEAT could be replaced in-line by its own definition.

Other loop-exit control-flow words, and even other loops, can be defined. The only requirements are that
the control-flow stack is properly maintained and manipulated.

The simple implementation of the CASE structure below is an example of control structure extension. Note
the maintenance of the data stack to prevent interference with the possible control-flow stack usage.

0 CONSTANT CASE IMMEDIATE (init count of OFs)

: OF (#of -- orig #of+1 / x --)
1+ (count OFs)
>R (move off the stack in case the control-flow)

(stack is the data stack.)
POSTPONE OVER POSTPONE = (copy and test case value)
POSTPONE IF (add orig to control flow stack)

182

Forth 2012 RC1 A. Rationale

Figure A.3: Extended control-flow patterns

POSTPONE DROP (discards case value if =)
R> (we can bring count back now)

; IMMEDIATE

: ENDOF (orig1 #of -- orig2 #of)
>R (move off the stack in case the control-flow)

(stack is the data stack.)
POSTPONE ELSE
R> (we can bring count back now)

; IMMEDIATE

: ENDCASE (orig1..orign #of --)
POSTPONE DROP (discard case value)
0 ?DO
POSTPONE THEN

LOOP
; IMMEDIATE

A.3.2.3.3 Return stack

183

A. Rationale Forth 2012 RC1

The restrictions in section 3.2.3.3 Return stack are necessary if implementations are to be allowed to place
loop parameters on the return stack.

A.3.2.6 Environmental queries

The size in address units of various data types may be determined by phrases such as 1 CHARS. Similarly,
alignment may be determined by phrases such as 1 ALIGNED.

The environmental queries are divided into two groups: those that always produce the same value and those
that might not. The former groups include entries such as MAX-N. This information is fixed by the hardware
or by the design of the Forth system; a user is guaranteed that asking the question once is sufficient.

The other, now obsolescent, group of queries are for things that may legitimately change over time. For
example an application might test for the presence of the Double Number word set using an environment
query. If it is missing, the system could invoke a system-dependent process to load the word set. The
system is permitted to change ENVIRONMENT?’s database so that subsequent queries about it indicate that
it is present.

Note that a query that returns an “unknown” response could produce a “known” result on a subsequent
query.

A.3.2.7 Obsolescent Environmental Queries

When reviewing the Forth 94 Standard, the question of adapting the word set queries had to be addressed.
Despite the recommendation in Forth 94, word set queries have not been supported in a meaningful way
by many systems. Consequently, these queries are not used by many programmers. The Committee was
unwilling to exacerbate the problem by introducing additional queries for the revised word sets. The
Committee has therefore declared the word set environment queries (see table 3.6) as obsolescent with the
intention of removing them altogether in the next revision. They are retained in this Standard to support
existing Forth 94 programs. New programs should not use them.

A.3.3 The Forth dictionary

A Standard Program may redefine a standard word with a non-standard definition. The program is still
Standard (since it can be built on any Standard System), but the effect is to make the combined entity
(Standard System plus Standard Program) a non-standard system.

A.3.3.1 Name space

A.3.3.1.2 Definition names

The language in this section is there to ensure the portability of Standard Programs. If a program uses
something outside the Standard that it does not provide itself, there is no guarantee that another imple-
mentation will have what the program needs to run. There is no intent whatsoever to imply that all Forth
programs will be somehow lacking or inferior because they are not standard; some of the finest jewels
of the programmer’s art will be non-standard. At the same time, the committee is trying to ensure that a
program labeled “Standard” will meet certain expectations, particularly with regard to portability.

In many system environments the input source is unable to supply certain non-graphic characters due to
external factors, such as the use of those characters for flow control or editing. In addition, when interpret-
ing from a text file, the parsing function specifically treats non-graphic characters like spaces; thus words

184

Forth 2012 RC1 A. Rationale

received by the text interpreter will not contain embedded non-graphic characters. To allow implement-
ations in such environments to call themselves Standard, this minor restriction on Standard Programs is
necessary.

A Standard System is allowed to permit the creation of definition names containing non-graphic characters.
Historically, such names were used for keyboard editing functions and “invisible” words.

A.3.3.2 Code space

A.3.3.3 Data space

The words >IN, BASE, BLK, SCR, SOURCE, SOURCE-ID, STATE contain information used by the Forth
system in its operation and may be of use to the application. Any assumption made by the application
about data available in the Forth system it did not store other than the data just listed is an environmental
dependency.

There is no point in specifying (in the Standard) both what is and what is not addressable. A Standard
Program may NOT address:

– Directly into the data or return stacks;

– Into a definition’s data field if not stored by the application.

The read-only restrictions arise because some Forth systems run from ROM and some share I/O buffers
with other users or systems. Portable programs cannot know which areas are affected, hence the general
restrictions.

A.3.3.3.1 Address alignment

Some processors have restrictions on the addresses that can be used by memory access instructions. For
example, some architectures require 16-bit data to be loaded or stored only at even addresses and 32-bit
data only at addresses that are multiples of four.

An implementor can handle these alignment restrictions in one of two ways. Forth’s memory access words
(@, !, +!, etc.) could be implemented in terms of smaller-width access instructions which have no align-
ment restrictions. For example, on a system with 16-bit cells, @ could be implemented with two byte-fetch
instructions and a reassembly of the bytes into a 16-bit cell. Although this conceals hardware restrictions
from the programmer, it is inefficient, and may have unintended side effects in some hardware environ-
ments. An alternate implementation could define each memory-access word using the native instructions
that most closely match the word’s function. The 16-bit cell system could implement @ using the pro-
cessor’s 16-bit fetch instruction, in this case, the responsibility for giving @ a correctly-aligned address
falls on the programmer. A portable program must assume that alignment may be required and follow the
requirements of this section.

A.3.3.3.2 Contiguous regions

The data space of a Forth system comes in discontinuous regions. The location of some regions is provided
by the system, some by the program. Data space is contiguous within regions, allowing address arithmetic

185

A. Rationale Forth 2012 RC1

to generate valid addresses only within a single region. A Standard Program cannot make any assumptions
about the relative placement of multiple regions in memory.

Section 3.3.3.2 does prescribe conditions under which contiguous regions of data space may be obtained.
For example:

CREATE TABLE 1 C, 2 C, ALIGN 1000 , 2000 ,

makes a table whose address is returned by TABLE. In accessing this table,

TABLE C@ will return 1
TABLE CHAR+ C@ will return 2
TABLE 2 CHARS + ALIGNED @ will return 1000
TABLE 2 CHARS + ALIGNED CELL+ @ will return 2000.

Similarly,

CREATE DATA 1000 ALLOT

makes an array 1000 address units in size. A more portable strategy would define the array in application
units, such as:

500 CONSTANT NCELLS
CREATE CELL-DATA NCELLS CELLS ALLOT

This array can be indexed like this:

: LOOK NCELLS 0 DO CELL-DATA I CELLS + ? LOOP ;

A.3.3.3.6 Other transient regions

In many existing Forth systems, these areas are at HERE or just beyond it, hence the many restrictions.

(2 ∗ n)+2 is the size of a character string containing the unpunctuated binary representation of the maxi-
mum double number with a leading minus sign and a trailing space.

Implementation note: Since the minimum value of n is 16, the absolute minimum size of the pictured
numeric output string is 34 characters. But if your implementation has a larger n, you must also increase
the size of the pictured numeric output string.

A.3.4 The Forth text interpreter

A.3.4.3 Semantics

The “initiation semantics” correspond to the code that is executed upon entering a definition, analogous
to the code executed by EXIT upon leaving a definition. The “run-time semantics” correspond to code
fragments, such as literals or branches, that are compiled inside colon definitions by words with explicit
compilation semantics.

In a Forth cross compiler, the execution semantics may be specified to occur in the host system only, the
target system only, or in both systems. For example, it may be appropriate for words such as CELLS to
execute on the host system returning a value describing the target, for colon definitions to execute only on

186

Forth 2012 RC1 A. Rationale

the target, and for CONSTANT and VARIABLE to have execution behaviors on both systems. Details of
cross compiler behavior are beyond the scope of this Standard.

A.3.4.3.2 Interpretation semantics

For a variety of reasons, this Standard does not define interpretation semantics for every word. Examples of
these words are >R, .", DO, and IF. Nothing in this Standard precludes an implementation from providing
interpretation semantics for these words, such as interactive control-flow words. However, a Standard
Program may not use them in interpretation state.

A.3.4.5 Compilation

Compiler recursion at the definition level consumes excessive resources, especially to support locals. The
Committee does not believe that the benefits justify the costs. Nesting definitions is also not common
practice and won’t work on many systems.

A.4 Documentation requirements

A.4.1 System documentation

A.4.2 Program documentation

A.5 Compliance and labeling

A.5.1 Forth-2012 systms

Section 5.1 defines the criteria that a system must meet in order to justify the label “Forth-2012 System”.
Briefly, the minimum requirement is that the system must “implement” the Core word set. There are
several ways in which this requirement may be met. The most obvious is that all Core words may be in a
pre-compiled kernel. This is not the only way of satisfying the requirement, however. For example, some
words may be provided in source blocks or files with instructions explaining how to add them to the system
if they are needed. So long as the words are provided in such a way that the user can obtain access to them
with a clear and straightforward procedure, they may be considered to be present.

A Forth cross compiler has many characteristics in common with a standard system, in that both use
similar compiling tools to process a program. However, in order to fully specify a Forth-2012 standard
cross compiler it would be necessary to address complex issues dealing with compilation and execution
semantics in both host and target environments as well as ROMability issues. The level of effort to do this
properly has proved to be impractical at this time. As a result, although it may be possible for a Forth cross
compiler to correctly prepare a Forth-2012 standard program for execution in a target environment, it is
inappropriate for a cross compiler to be labeled a Forth-2012 standard system.

A.5.2 Forth-2012 programgs

A.5.2.2 Program labeling

Declaring an environmental dependency should not be considered undesirable, merely an acknowledg-
ment that the author has taken advantage of some assumed architecture. For example, most computers
in common use are based on two’s complement binary arithmetic. By acknowledging an environmental

187

A. Rationale Forth 2012 RC1

dependency on this architecture, a programmer becomes entitled to use the number -1 to represent all bits
set without significantly restricting the portability of the program.

Because all programs require space for data and instructions, and time to execute those instructions, they
depend on the presence of an environment providing those resources. It is impossible to predict how little
of some of these resources (e.g. stack space) might be necessary to perform some task, so this Standard
does not do so.

On the other hand, as a program requires increasing levels of resources, there will probably be sucessively
fewer systems on which it will execute sucessfully. An algorithm requiring an array of 109 cells might run
on fewer computers than one requiring only 103.

Since there is also no way of knowing what minimum level of resources will be implemented in a system
useful for at least some tasks, any program performing real work labeled simply a “Standard Forth-2012
Program” is unlikely to be labeled correctly.

A.6 Glossary

In this and following sections we present rationales for the handling of specific words: why we included
them, why we placed them in certain word sets, or why we specified their names or meaning as we did.

Words in this section are organized by word set, retaining their index numbers for easy cross-referencing
to the glossary.

Historically, many Forth systems have been written in Forth. Many of the words in Forth originally had
as their primary purpose support of the Forth system itself. For example, WORD and FIND are often used
as the principle instruments of the Forth text interpreter, and CREATE in many systems is the primitive for
building dictionary entries. In defining words such as these in a standard way, we have endeavored not to
do so in such a way as to preclude their use by implementors. One of the features of Forth that has endeared
it to its users is that the same tools that are used to implement the system are available to the application
programmer — a result of this approach is the compactness and efficiency that characterizes most Forth
implementations.

A.6.1.0070 ’

Typical use: . . . ’ name.

Many Forth systems use a state-smart tick. Many do not. Forth-2012 follows the usage of Forth 94.

See: A.3.4.3.2 Interpretation semantics, A.6.1.1550 FIND.

A.6.1.0080 (

Typical use: . . . (ccc) . . .

A.6.1.0140 +LOOP

Typical use: : X . . . limit first DO . . . step +LOOP ;

A.6.1.0150 ,

The use of , (comma) for compiling execution tokens is not portable.

See: 6.2.0945 COMPILE,.

188

Forth 2012 RC1 A. Rationale

A.6.1.0190 ."

Typical use: : X" ccc" . . . ;

An implementation may define interpretation semantics for ." if desired. In one plausible imple-
mentation, interpreting ." would display the delimited message. In another plausible implement-
ation, interpreting ." would compile code to display the message later. In still another plausible
implementation, interpreting ." would be treated as an exception. Given this variation a Stand-
ard Program may not use ." while interpreting. Similarly, a Standard Program may not compile
POSTPONE ." inside a new word, and then use that word while interpreting.

A.6.1.0450 :

Typical use: : name . . . ;

In Forth 83, this word was specified to alter the search order. This specification is explicitly removed
in this Standard. We believe that in most cases this has no effect; however, systems that allow many
search orders found the Forth-83 behavior of colon very undesirable.

Note that colon does not itself invoke the compiler. Colon sets compilation state so that later words
in the parse area are compiled.

A.6.1.0460 ;

Typical use: : name . . . ;

One function performed by both ; and ;CODE is to allow the current definition to be found in the
dictionary. If the current definition was created by :NONAME the current definition has no definition
name and thus cannot be found in the dictionary. If :NONAME is implemented the Forth compiler
must maintain enough information about the current definition to allow ; and ;CODE to determine
whether or not any action must be taken to allow it to be found.

A.6.1.0550 >BODY

a-addr is the address that HERE would have returned had it been executed immediately after the
execution of the CREATE that defined xt.

A.6.1.0680 ABORT"

Typical use: : X . . . test ABORT" ccc" . . . ;

A.6.1.0695 ACCEPT

Specification of a non-zero, positive integer count (+n1) for ACCEPT allows some implementors to
continue their practice of using a zero or negative value as a flag to trigger special behavior. Insofar as
such behavior is outside the Standard, Standard Programs cannot depend upon it, but the Committee
doesn’t wish to preclude it unnecessarily. Since actual values are almost always small integers, no
functionality is impaired by this restriction.

It is recommended that all non-graphic characters be reserved for editing or control functions and
not be stored in the input string.

Because external system hardware and software may perform the ACCEPT function, when a line
terminator is received the action of the cursor, and therefore the display, is implementation-defined. It
is recommended that the cursor remain immediately following the entered text after a line terminator
is received.

189

A. Rationale Forth 2012 RC1

A.6.1.0705 ALIGN
In this Standard we have attempted to provide transportability across various CPU architectures. One
of the frequent causes of transportability problems is the requirement of cell-aligned addresses on
some CPUs. On these systems, ALIGN and ALIGNED may be required to build and traverse data
structures built with C,. Implementors may define these words as no-ops on systems for which they
aren’t functional.

A.6.1.0760 BEGIN
Typical use:

: X . . . BEGIN . . . test UNTIL ;

or

: X . . . BEGIN . . . test WHILE . . . REPEAT ;

A.6.1.0770 BL
Because space is used throughout Forth as the standard delimiter, this word is the only way a program
has to find and use the system value of “space”. The value of a space character can not be obtained
with CHAR, for instance.

A.6.1.0880 CELL+
As with ALIGN and ALIGNED, the words CELLS and CELL+ were added to aid in transportability
across systems with different cell sizes. They are intended to be used in manipulating indexes and
addresses in integral numbers of cell-widths. Example:

2VARIABLE DATA

0 100 DATA 2!

DATA @ . 100

DATA CELL+ @ . 0

A.6.1.0890 CELLS
Example:

CREATE NUMBERS 100 CELLS ALLOT

Allots space in the array NUMBERS for 100 cells of data.

A.6.1.0895 CHAR
Typical use: . . . CHAR A CONSTANT "A" . . .

A.6.1.0950 CONSTANT
Typical use: . . . DECIMAL 10 CONSTANT TEN . . .

A.6.1.1000 CREATE
The data-field address of a word defined by CREATE is given by the data-space pointer immediately
following the execution of CREATE.

Reservation of data field space is typically done with ALLOT.

Typical use: . . . CREATE SOMETHING . . .

190

Forth 2012 RC1 A. Rationale

A.6.1.1240 DO

Typical use:

: X . . . limit first DO . . . LOOP ;

or

: X . . . limit first DO . . . step +LOOP ;

A.6.1.1250 DOES>

Typical use: : X . . . DOES> . . . ;

Following DOES>, a Standard Program may not make any assumptions regarding the ability to find
either the name of the definition containing the DOES> or any previous definition whose name may
be concealed by it. DOES> effectively ends one definition and begins another as far as local variables
and control-flow structures are concerned. The compilation behavior makes it clear that the user is
not entitled to place DOES> inside any control-flow structures.

A.6.1.1310 ELSE

Typical use: : X . . . test IF . . . ELSE . . . THEN ;

A.6.1.1345 ENVIRONMENT?

In a Standard System that contains only the Core word set, effective use of ENVIRONMENT? requires
either its use within a definition, or the use of user-supplied auxiliary definitions. The Core word set
lacks both a direct method for collecting a string in interpretation state (11.6.1.2165 S" is in an
optional word set) and also a means to test the returned flag in interpretation state (e.g. the optional
15.6.2.2532 [IF]).

A.6.1.1380 EXIT

Typical use: : X . . . test IF . . . EXIT THEN . . . ;

A.6.1.1550 FIND

One of the more difficult issues which the Committee took on was the problem of divorcing the
specification of implementation mechanisms from the specification of the Forth language. Three
basic implementation approaches can be quickly enumerated:

1) Threaded code mechanisms. These are the traditional approaches to implementing Forth, but
other techniques may be used.

2) Subroutine threading with “macro-expansion” (code copying). Short routines, like the code for
DUP, are copied into a definition rather than compiling a JSR reference.

3) Native coding with optimization. This may include stack optimization (replacing such phrases
as SWAP ROT + with one or two machine instructions, for example), parallelization (the trend
in the newer RISC chips is to have several functional subunits which can execute in parallel),
and so on.

The initial requirement (inherited from Forth 83) that compilation addresses be compiled into the
dictionary disallowed type 2 and type 3 implementations.

191

A. Rationale Forth 2012 RC1

Type 3 mechanisms and optimizations of type 2 implementations were hampered by the explicit
specification of immediacy or non-immediacy of all standard words. POSTPONE allowed de-spec-
ification of immediacy or non-immediacy for all but a few Forth words whose behavior must be
STATE-independent.

One type 3 implementation, Charles Moore’s cmForth, has both compiling and interpreting versions
of many Forth words. At the present, this appears to be a common approach for type 3 implement-
ations. The Committee felt that this implementation approach must be allowed. Consequently, it is
possible that words without interpretation semantics can be found only during compilation, and other
words may exist in two versions: a compiling version and an interpreting version. Hence the values
returned by FIND may depend on STATE, and ’ and [’] may be unable to find words without
interpretation semantics.

A.6.1.1561 FM/MOD
By introducing the requirement for “floored” division, Forth 83 produced much controversy and con-
cern on the part of those who preferred the more common practice followed in other languages of
implementing division according to the behavior of the host CPU, which is most often symmetric
(rounded toward zero). In attempting to find a compromise position, this Standard provides prim-
itives for both common varieties, floored and symmetric (see SM/REM). FM/MOD is the floored
version.

The Committee considered providing two complete sets of explicitly named division operators, and
declined to do so on the grounds that this would unduly enlarge and complicate the Standard. In-
stead, implementors may define the normal division words in terms of either FM/MOD or SM/REM
providing they document their choice. People wishing to have explicitly named sets of operators are
encouraged to do so. FM/MOD may be used, for example, to define:

: /_MOD (n1 n2 -- n3 n4) >R S>D R> FM/MOD ;

: /_ (n1 n2 -- n3) /_MOD SWAP DROP ;

: _MOD (n1 n2 -- n3) /_MOD DROP ;

: */_MOD (n1 n2 n3 -- n4 n5) >R M* R> FM/MOD ;

: */_ (n1 n2 n3 -- n4) */_MOD SWAP DROP ;

A.6.1.1700 IF
Typical use:

: X . . . test IF . . . THEN . . . ;

or

: X . . . test IF . . . ELSE . . . THEN . . . ;

A.6.1.1710 IMMEDIATE
Typical use: : X . . . ; IMMEDIATE

A.6.1.1720 INVERT
The word NOTwas originally provided in Forth as a flag operator to make control structures readable.
Under its intended usage the following two definitions would produce identical results:

192

Forth 2012 RC1 A. Rationale

: ONE (flag --)
IF ." true" ELSE ." false" THEN ;

: TWO (flag --)
NOT IF ." false" ELSE ." true" THEN ;

This was common usage prior to the Forth-83 Standard which redefined NOT as a cell-wide one’s-
complement operation, functionally equivalent to the phrase -1 XOR. At the same time, the data type
manipulated by this word was changed from a flag to a cell-wide collection of bits and the standard
value for true was changed from “1” (rightmost bit only set) to “-1” (all bits set). As these definitions
of TRUE and NOT were incompatible with their previous definitions, many Forth users continue to
rely on the old definitions. Hence both versions are in common use.

Therefore, usage of NOT cannot be standardized at this time. The two traditional meanings of NOT
— that of negating the sense of a flag and that of doing a one’s complement operation — are made
available by 0= and INVERT, respectively.

A.6.1.1730 J

J may only be used with a nested DO . . . LOOP, DO . . . +LOOP, ?DO . . . LOOP, or ?DO . . . +LOOP,
for example, in the form:

: X . . . DO . . . DO . . . J . . . LOOP . . . +LOOP . . . ;

A.6.1.1750 KEY

Use of KEY indicates that the application is processing primitive characters. Some input devices,
e.g., keyboards, may provide more information than can be represented as a primitive character and
such an event may be received as an implementation-specific sequence of primitive characters.

See A.10.6.2.1305 EKEY.

A.6.1.1760 LEAVE

Note that LEAVE immediately exits the loop. No words following LEAVE within the loop will be
executed. Typical use:

: X . . . DO . . . IF . . . LEAVE THEN ;

A.6.1.1780 LITERAL

Typical use: : X . . . [x] LITERAL . . . ;

A.6.1.1800 LOOP

Typical use:

: X . . . limit first DO . . . LOOP . . . ;

or

: X . . . limit first ?DO . . . LOOP . . . ;

A.6.1.1810 M*
This word is a useful early step in calculation, going to extra precision conveniently. It has been in
use since the Forth systems of the early 1970’s.

193

A. Rationale Forth 2012 RC1

A.6.1.1900 MOVE

CMOVE and CMOVE> are the primary move operators in Forth 83. They specify a behavior for moving
that implies propagation if the move is suitably invoked. In some hardware, this specific behavior
cannot be achieved using the best move instruction. Further, CMOVE and CMOVE> move characters;
Forth needs a move instruction capable of dealing with address units. Thus MOVE has been defined
and added to the Core word set, and CMOVE and CMOVE> have been moved to the String word set.

A.6.1.2033 POSTPONE

Typical use:

: ENDIF POSTPONE THEN ; IMMEDIATE

: X . . . IF . . . ENDIF . . . ;

POSTPONE replaces most of the functionality of COMPILE and [COMPILE]. COMPILE and
[COMPILE] are used for the same purpose: postpone the compilation behavior of the next word
in the parse area. COMPILE was designed to be applied to non-immediate words and [COMPILE]
to immediate words. This burdens the programmer with needing to know which words in a system
are immediate. Consequently, Forth standards have had to specify the immediacy or non-immediacy
of all words covered by the Standard. This unnecessarily constrains implementors.

A second problem with COMPILE is that some programmers have come to expect and exploit a
particular implementation, namely:

: COMPILE R> DUP @ , CELL+ >R ;

This implementation will not work on native code Forth systems. In a native code Forth using inline
code expansion and peephole optimization, the size of the object code produced varies; this infor-
mation is difficult to communicate to a “dumb” COMPILE. A “smart” (i.e., immediate) COMPILE
would not have this problem, but this was forbidden in previous standards.

For these reasons, COMPILE has not been included in the Standard and [COMPILE] has been
moved in favor of POSTPONE. Additional discussion can be found in Hayes, J.R., “Postpone”, Pro-
ceedings of the 1989 Rochester Forth Conference.

A.6.1.2120 RECURSE

Typical use: : X . . . RECURSE . . . ;

This is Forth’s recursion operator; in some implementations it is called MYSELF. The usual example
is the coding of the factorial function.

: FACTORIAL (+n1 -- +n2)
DUP 2 < IF DROP 1 EXIT THEN
DUP 1- RECURSE *

;

n2 = n1(n1 − 1)(n1 − 2) · · ·(2)(1), the product of n1 with all positive integers less than itself (as
a special case, zero factorial equals one). While beloved of computer scientists, recursion makes
unusually heavy use of both stacks and should therefore be used with caution. See alternate definition
in A.6.1.2140 REPEAT.

194

Forth 2012 RC1 A. Rationale

A.6.1.2140 REPEAT
Typical use:

: FACTORIAL (+n1 -- +n2)
DUP 2 < IF DROP 1 EXIT THEN
DUP
BEGIN DUP 2 > WHILE

1- SWAP OVER * SWAP
REPEAT DROP

;

A.6.1.2165 S"

Typical use: : X . . . S" ccc" . . . ;

A.6.1.2214 SM/REM

See the previous discussion of division under FM/MOD. SM/REM is the symmetric-division primitive,
which allows programs to define the following symmetric-division operators:

: /-REM (n1 n2 -- n3 n4) >R S>D R> SM/REM ;

: /- (n1 n2 -- n3) /-REM SWAP DROP ;

: -REM (n1 n2 -- n3) /-REM DROP ;

: */-REM (n1 n2 n3 -- n4 n5) >R M* R> SM/REM ;

: */- (n1 n2 n3 -- n4) */-REM SWAP DROP ;

A.6.1.2216 SOURCE
SOURCE simplifies the process of directly accessing the input buffer by hiding the differences be-
tween its location for different input sources. This also gives implementors more flexibility in their
implementation of buffering mechanisms for different input sources. The committee moved away
from an input buffer specification consisting of a collection of individual variables.

A.6.1.2250 STATE

Although EVALUATE, LOAD, INCLUDE-FILE and INCLUDED are not listed as words which alter
STATE, the text interpreted by any one of these words could include one or more words which
explicitly alter STATE. EVALUATE, LOAD, INCLUDE-FILE and INCLUDED do not in themselves
alter STATE.

STATE does not nest with text interpreter nesting. For example, the code sequence:

: FOO S"]" EVALUATE ; FOO

will leave the system in compilation state. Similarly, after LOADing a block containing], the system
will be in compilation state.

Note that] does not affect the parse area and that the only effect that : has on the parse area is to
parse a word. This entitles a program to use these words to set the state with known side-effects on
the parse area. For example:

: NOP : POSTPONE ; IMMEDIATE ;

195

A. Rationale Forth 2012 RC1

NOP ALIGN
NOP ALIGNED

Some non-compliant systems have] invoke a compiler loop in addition to setting STATE. Such a
system would inappropriately attempt to compile the second use of NOP.

A.6.1.2270 THEN
Typical use:

: X . . . test IF . . . THEN . . . ;

or

: X . . . test IF . . . ELSE . . . THEN . . . ;

A.6.1.2380 UNLOOP
Typical use:

: X . . .
limit first DO

. . . test IF . . . UNLOOP EXIT THEN . . .
LOOP . . .

;

UNLOOP allows the use of EXIT within the context of DO . . . LOOP and related do-loop constructs.
UNLOOP as a function has been called UNDO. UNLOOP is more indicative of the action: nothing gets
undone — we simply stop doing it.

A.6.1.2390 UNTIL
Typical use: : X . . . BEGIN . . . test UNTIL . . . ;

A.6.1.2410 VARIABLE
Typical use: VARIABLE XYZ

A.6.1.2430 WHILE
Typical use: : X . . . BEGIN . . . test WHILE . . . REPEAT . . . ;

A.6.1.2450 WORD
Typical use: char WORD ccc〈char〉

A.6.1.2500 [
Typical use: : X . . . [4321] LITERAL . . . ;

A.6.1.2510 [’]
Typical use: : X . . . [’] name . . . ;

See: A.6.1.1550 FIND.

A.6.1.2520 [CHAR]
Typical use: : X . . . [CHAR] c . . . ;

A.6.1.2540]
Typical use: : X . . . [4321] LITERAL . . . ;

196

Forth 2012 RC1 A. Rationale

A.6.2 Core extension words

The words in this collection fall into several categories:

– Words that are in common use but are deemed less essential than Core words (e.g., 0<>);

– Words that are in common use but can be trivially defined from Core words (e.g., FALSE);

– Words that are primarily useful in narrowly defined types of applications or are in less frequent use
(e.g., PARSE);

– Words that are being deprecated in favor of new words introduced to solve specific problems.

Because of the varied justifications for inclusion of these words, the Committee does not encourage imple-
mentors to offer the complete collection, but to select those words deemed most valuable to their clientele.

A.6.2.0200 .(

Typical use: .(ccc)

A.6.2.0210 .R

In .R, “R” is short for RIGHT.

A.6.2.0340 2>R

The primary advantage of 2>R is that it puts the top stack entry on the top of the return stack.
For instance, a double-cell number may be transferred to the return stack and still have the most
significant cell accessible on the top of the return stack.

A.6.2.0410 2R>

Note that 2R> is not equivalent to R> R>. Instead, it mirrors the action of 2>R (see A.6.2.0340).

A.6.2.0455 :NONAME

Typical use:

DEFER print

:NONAME (n --) . ; IS print

Note: RECURSE and DOES> shall work within a :NONAME definition.

A.6.2.0620 ?DO

Typical use:

?DO . . . LOOP

A.6.2.0700 AGAIN

Typical use: : X . . . BEGIN . . . AGAIN . . . ;

Unless word-sequence has a way to terminate, this is an endless loop.

A.6.2.0825 BUFFER:

BUFFER: provides a means of defining an uninitialized buffer. In systems that use a single memory
space, this can effectively be defined as:

197

A. Rationale Forth 2012 RC1

: BUFFER: (u "<name>" -- ; -- addr)
CREATE ALLOT

;

However, many systems profit from a separation of uninitialized and initialized data areas. Such
systems can implement BUFFER: so that it allocates memory from a separate uninitialized memory
area. Embedded systems can take advantage of the lack of initialization of the memory area while
hosted systems are permitted to ALLOCATE a buffer. A system may select a region of memory for
performance reasons. A detailed knowledge of the memory allocation within the system is required
to provide a version of BUFFER: that can take advantage of the system.

It should be noted that the memory buffer provided by BUFFER: is not initialized by the system and
that if the application requires it to be initialized, it is the responsibility of the application to initialize
it.

A.6.2.0855 C"

Typical use: : X . . . C" ccc" . . . ;

See: A.3.1.3.4 Counted strings.

A.6.2.0873 CASE

Typical use:

: X . . .
CASE

test1 OF . . . ENDOF
testn OF . . . ENDOF
. . . (default)

ENDCASE . . .
;

A.6.2.0945 COMPILE,

The intention is that COMPILE, can be used as follows to write the classic interpreter/compiler loop:

... (c-addr)
FIND ?DUP IF (xt +-1)
STATE @ IF (xt +-1)

0> IF EXECUTE ELSE COMPILE, THEN (???)
ELSE (xt +-1)

DROP EXECUTE (???)
THEN

ELSE (c-addr)
(whatever you do for an undefined word)

THEN
...

Thus the interpretation semantics are left undefined, as COMPILE, will not be executed during
interpretation.

198

Forth 2012 RC1 A. Rationale

In traditional threaded-code implementations, compilation is performed by , (comma). This usage
is not portable; it doesn’t work for subroutine-threaded, native code, or relocatable implementations.
Use of COMPILE, is portable.

In most systems it is possible to implement COMPILE, so it will generate code that is optimized
to the same extent as code that is generated by the normal compilation process. However, in some
implementations there are two different “tokens” corresponding to a particular definition name: the
normal “execution token” that is used while interpreting or with EXECUTE, and another “compilation
token” that is used while compiling. It is not always possible to obtain the compilation token from the
execution token. In these implementations, COMPILE, might not generate code that is as efficient
as normally compiled code.

A.6.2.1342 ENDCASE
Typical use:

: X . . .
CASE

test1 OF . . . ENDOF
testn OF . . . ENDOF
. . . (default)

ENDCASE . . .
;

A.6.2.1343 ENDOF
Typical use:

: X . . .
CASE

test1 OF . . . ENDOF
testn OF . . . ENDOF
. . . (default)

ENDCASE . . .
;

A.6.2.1850 MARKER
As dictionary implementations have become more elaborate and in some cases have used multiple
address spaces, FORGET has become prohibitively difficult or impossible to implement on many
Forth systems. MARKER greatly eases the problem by making it possible for the system to remember
“landmark information” in advance that specifically marks the spots where the dictionary may at
some future time have to be rearranged.

A.6.2.1950 OF
Typical use:

: X . . .
CASE

test1 OF . . . ENDOF
testn OF . . . ENDOF
. . . (default)

199

A. Rationale Forth 2012 RC1

ENDCASE . . .
;

A.6.2.2000 PAD

PAD has been available as scratch storage for strings since the earliest Forth implementations. It was
brought to our attention that many programmers are reluctant to use PAD, fearing incompatibilities
with system uses. PAD is specifically intended as a programmer convenience, however, which is why
we documented the fact that no standard words use it.

A.6.2.2008 PARSE

Typical use: char PARSE ccc〈char〉

The traditional Forth word for parsing is WORD. PARSE solves the following problems with WORD:

a) WORD always skips leading delimiters. This behavior is appropriate for use by the text inter-
preter, which looks for sequences of non-blank characters, but is inappropriate for use by words
like (, .(, and .". Consider the following (flawed) definition of .(:

: .([CHAR]) WORD COUNT TYPE ; IMMEDIATE

This works fine when used in a line like:

.(HELLO) 5 .

but consider what happens if the user enters an empty string:

.() 5 .

The definition of .(shown above would treat the) as a leading delimiter, skip it, and continue
consuming characters until it located another) that followed a non-) character, or until the
parse area was empty. In the example shown, the 5 . would be treated as part of the string to
be printed.

With PARSE, we could write a correct definition of .(:

: .([CHAR]) PARSE TYPE ; IMMEDIATE

This definition avoids the “empty string” anomaly.

b) WORD returns its result as a counted string. This has four bad effects:

1) The characters accepted by WORD must be copied from the input buffer into a temporary
buffer, in order to make room for the count character that must be at the beginning of the
counted string. The copy step is inefficient, compared to PARSE, which leaves the string
in the input buffer and doesn’t need to copy it anywhere.

2) WORD must be careful not to store too many characters into the temporary buffer, thus
overwriting something beyond the end of the buffer. This adds to the overhead of the copy
step. (WORD may have to scan a lot of characters before finding the trailing delimiter.)

3) The count character limits the length of the string returned by WORD to 255 characters
(longer strings can easily be stored in blocks!). This limitation does not exist for PARSE.

200

Forth 2012 RC1 A. Rationale

4) The temporary buffer is typically overwritten by the next use of WORD. This introduces
a temporal dependency; the value returned by WORD is only valid for a limited duration.
PARSE has a temporal dependency, too, related to the lifetime of the input buffer, but that
is less severe in most cases than WORD’s temporal dependency.

The behavior of WORD with respect to skipping leading delimiters is useful for parsing blank
delimited names. PARSE-NAME provides this service in a similar manner to PARSE with
respect to the “c-addr u” return value, but without an explicit delimiter argument (the delimiter
set is implicitly “white space”).

The need for WORD has largely been eliminated by PARSE and PARSE-NAME. WORD is re-
tained for backward compatibility.

A.6.2.2030 PICK
0 PICK is equivalent to DUP and 1 PICK is equivalent to OVER.

A.6.2.2125 REFILL
REFILL is designed to behave reasonably for all possible input sources. If the input source is
coming from the user, REFILL could still return a false value if, for instance, a communication
channel closes so that the system knows that no more input will be available.

A.6.2.2150 ROLL
2 ROLL is equivalent to ROT, 1 ROLL is equivalent to SWAP and 0 ROLL is a null operation.

A.6.2.2182 SAVE-INPUT
SAVE-INPUT and RESTORE-INPUT allow the same degree of input source repositioning within a
text file as is available with BLOCK input. SAVE-INPUT and RESTORE-INPUT “hide the details”
of the operations necessary to accomplish this repositioning, and are used the same way with all
input sources. This makes it easier for programs to reposition the input source, because they do not
have to inspect several variables and take different action depending on the values of those variables.

SAVE-INPUT and RESTORE-INPUT are intended for repositioning within a single input source;
for example, the following scenario is NOT allowed for a Standard Program:

: XX
SAVE-INPUT CREATE
S" RESTORE-INPUT" EVALUATE
ABORT" couldn’t restore input"

;

This is incorrect because, at the time RESTORE-INPUT is executed, the input source is the string
via EVALUATE, which is not the same input source that was in effect when SAVE-INPUT was
executed.

The following code is allowed:

: XX
SAVE-INPUT CREATE
S" .(Hello)" EVALUATE
RESTORE-INPUT ABORT" couldn’t restore input"

;

201

A. Rationale Forth 2012 RC1

After EVALUATE returns, the input source specification is restored to its previous state, thus SAVE-
INPUT and RESTORE-INPUT are called with the same input source in effect.

In the above examples, the EVALUATE phrase could have been replaced by a phrase involving
INCLUDE-FILE and the same rules would apply.

The Standard does not specify what happens if a program violates the above rules. A Standard
System might check for the violation and return an exception indication from RESTORE-INPUT, or
it might fail in an unpredictable way.

The return value from RESTORE-INPUT is primarily intended to report the case where the program
attempts to restore the position of an input source whose position cannot be restored. The keyboard
might be such an input source.

Nesting of SAVE-INPUT and RESTORE-INPUT is allowed. For example, the following situation
works as expected:

: XX
SAVE-INPUT

S" f1" INCLUDED
\ The file "f1" includes:
\ ... SAVE-INPUT ... RESTORE-INPUT ...
\ End of file "f1"

RESTORE-INPUT ABORT" couldn’t restore input"
;

In principle, RESTORE-INPUT could be implemented to “always fail”, e.g.:

: RESTORE-INPUT (x1 ... xn n -- flag)
0 ?DO DROP LOOP TRUE

;

Such an implementation would not be useful in most cases. It would be preferable for a system to
leave SAVE-INPUT and RESTORE-INPUT undefined, rather than to create a useless implement-
ation. In the absence of the words, the application programmer could choose whether or not to create
“dummy” implementations or to work-around the problem in some other way.

Examples of how an implementation might use the return values from SAVE-INPUT to accomplish
the save/restore function:

Input Source possible stack values
block >IN @ BLK @ 2
EVALUATE >IN @ 1
keyboard >IN @ 1
text file >IN @ lo-pos hi-pos 3

These are examples only; a Standard Program may not assume any particular meaning for the indi-
vidual stack items returned by SAVE-INPUT.

A.6.2.2295 TO

Typical use: x TO name

202

Forth 2012 RC1 A. Rationale

Some implementations of TO do not parse; instead they set a mode flag that is tested by the
subsequent execution of name. Standard programs must use TO as if it parses. Therefore TO and
name must be contiguous, on the same line, in the source text.

A.6.2.2298 TRUE
TRUE is equivalent to the phrase 0 0=.

A.6.2.2405 VALUE
Typical use:

0 VALUE data

: EXCHANGE (n1 -- n2) data SWAP TO data ;

EXCHANGE leaves n1 in data and returns the prior value n2.

A.6.2.2440 WITHIN
We describe WITHIN without mentioning circular number spaces (an undefined term) or providing
the code. Here is a number line with the overflow point (o) at the far right and the underflow point
(u) at the far left:

u o

There are two cases to consider: either the n2 | u2. . . n3 | u3 range straddles the overflow/underflow
points or it does not. Lets examine the non-straddle case first:

u [.) o

The [denotes n2 | u2, the) denotes n3 | u3, and the dots and [are numbers WITHIN the range. n3 | u3
is greater than n2 | u2, so the following tests will determine if n1 | u1 is WITHIN n2 | u2 and n3 | u3:

n2 | u2 ≤ n1 | u1 and n1 | u1 < n3 | u3.

In the case where the comparison range straddles the overflow/underflow points:

u) [. o

n3 | u3 is less than n2 | u2 and the following tests will determine if n1 | u1 is WITHIN n2 | u2 and
n3 | u3:

n2 | u2 ≤ n1 | u1 or n1 | u1 < n3 | u3.

WITHIN must work for both signed and unsigned arguments. One obvious implementation does not
work:

: WITHIN (test low high -- flag)
>R OVER < 0= (test flag1) SWAP R> < (flag1 flag2) AND

;

Assume two’s-complement arithmetic on a 16-bit machine, and consider the following test:

33000 32000 34000 WITHIN

The above implementation returns false for that test, even though the unsigned number 33000 is
clearly within the range {{32000 . . . 34000}}.

203

A. Rationale Forth 2012 RC1

The problem is that, in the incorrect implementation, the signed comparison < gives the wrong an-
swer when 32000 is compared to 33000, because when those numbers are treated as signed numbers,
33000 is treated as negative 32536, while 32000 remains positive.

Replacing < with U< in the above implementation makes it work with unsigned numbers, but causes
problems with certain signed number ranges; in particular, the test:

1 -5 5 WITHIN

would give an incorrect answer.

For two’s-complement machines that ignore arithmetic overflow (most machines), the following
implementation works in all cases:

: WITHIN (test low high -- flag) OVER - >R - R> U< ;

A.6.2.2530 [COMPILE]
Typical use: : name2 . . . [COMPILE] name1 . . . ; IMMEDIATE

A.6.2.2535 \
Typical use:

5 CONSTANT THAT \ This is a comment about THAT

A.7 The optional Block word set
Early Forth systems ran without a host OS; these are known as native systems. Such systems provide
mass storage in blocks of 1024 bytes. The Block Word set includes the most common words for accessing
program source and data on disk.

In order to guarantee Standard Programs that need access to mass storage have a mechanism appropriate
for both native and non-native implementations, this standard requires that the Block word set be available
if any mass-storage facilities are provided. On non-native implementations, blocks normally reside in host
OS files.

A.7.2 Additional terms

block

Many Forth systems use blocks to contain program source. Conventionally such blocks are formatted
for editing as 16 lines of 64 characters. Source blocks are often referred to as “screens”.

A.7.3 Additional usage requirements

A.7.3.2 Block buffer regions

While the standard does not address multitasking per se, the items listed in 7.3.2 Block buffer regions that
may render block-buffer addresses invalid are due to multitasking considerations. The standard restricts
programs such that items that could fail on multitasking systems are not standard usage. It also permits
multitasking systems to be declared standard systems.

A.7.6 Glossary

204

Forth 2012 RC1 A. Rationale

A.7.6.2.2190 SCR
SCR is short for screen.

A.8 The optional Double-Number word set
Forth systems on 8-bit and 16-bit processors often find it necessary to deal with double-length numbers.
But many Forths on small embedded systems do not, and many users of Forth on systems with a cell size
of 32-bits or more find that the necessity for double-length numbers is much diminished. Therefore, we
have factored the words that manipulate double-length entities into this optional word set.

Please note that the naming convention used in this word set conveys some important information:

1. Words whose names are of the form 2xxx deal with cell pairs, where the relationship between the
cells is unspecified. They may be two-vectors, double-length numbers, or any pair of cells that it is
convenient to manipulate together.

2. Words with names of the form Dxxx deal specifically with double-length integers.

3. Words with names of the form Mxxx deal with some combination of single and double integers. The
order in which these appear on the stack is determined by long-standing common practice.

Refer to A.3.1 for a discussion of data types in Forth.

A.8.6 Glossary

A.8.6.1.0360 2CONSTANT
Typical use: x1 x2 2CONSTANT name

A.8.6.1.0390 2LITERAL
Typical use: : X . . . [x1 x2] 2LITERAL . . . ;

A.8.6.1.0440 2VARIABLE
Typical use: 2VARIABLE name

A.8.6.1.1070 D.R
In D.R, the “R” is short for RIGHT.

A.8.6.1.1140 D>S
There exist number representations, e.g., the sign-magnitude representation, where reduction from
double- to single-precision cannot simply be done with DROP. This word, equivalent to DROP on
two’s complement systems, desensitizes application code to number representation and facilitates
portability.

A.8.6.1.1820 M*/
M*/ was once described by Chuck Moore as the most useful arithmetic operator in Forth. It is the
main workhorse in most computations involving double-cell numbers. Note that some systems allow
signed divisors. This can cost a lot in performance on some CPUs. The requirement for a positive
divisor has not proven to be a problem.

A.8.6.1.1830 M+
M+ is the classical method for integrating.

205

A. Rationale Forth 2012 RC1

A.8.6.2.0435 2VALUE
Typical use:

: fn1 S" filename" ;
fn1 2VALUE myfile
myfile INCLUDED

: fn2 S" filename2" ;
fn2 TO myfile
myfile INCLUDED

A.9 The optional Exception word set
CATCH and THROW provide a reliable mechanism for handling exceptions, without having to propagate
exception flags through multiple levels of word nesting. It is similar in spirit to the “non-local return”
mechanisms of many other languages, such as C’s setjmp() and longjmp(), and LISP’s CATCH and
THROW. In the Forth context, THROW may be described as a “multi-level EXIT”, with CATCH marking a
location to which a THROW may return.

Several similar Forth “multi-level EXIT” exception-handling schemes have been described and used in
past years. It is not possible to implement such a scheme using only standard words (other than CATCH
and THROW), because there is no portable way to “unwind” the return stack to a predetermined place.

THROW also provides a convenient implementation technique for the standard words ABORT and ABORT",
allowing an application to define, through the use of CATCH, the behavior in the event of a system ABORT.

CATCH and THROW provide a convenient way for an implementation to “clean up” the state of open files if
an exception occurs during the text interpretation of a file with INCLUDE-FILE. The implementation of
INCLUDE-FILE may guard (with CATCH) the word that performs the text interpretation, and if CATCH
returns an exception code, the file may be closed and the exception reTHROWn so that the files being
included at an outer nesting level may be closed also. Note that the Standard allows, but does not require,
INCLUDE-FILE to close its open files if an exception occurs. However, it does require INCLUDE-FILE
to unnest the input source specification if an exception is THROWn.

A.9.3 Additional usage requirements

One important use of an exception handler is to maintain program control under many conditions which
ABORT. This is practicable only if a range of codes is reserved. Note that an application may overload many
standard words in such a way as to THROW ambiguous conditions not normally THROWn by a particular
system.

A.9.3.6 Exception handling

The method of accomplishing this coupling is implementation dependent. For example, LOAD could
“know” about CATCH and THROW (by using CATCH itself, for example), or CATCH and THROW could
“know” about LOAD (by maintaining input source nesting information in a data structure known to THROW,
for example). Under these circumstances it is not possible for a Standard Program to define words such as
LOAD in a completely portable way.

A.9.6 Glossary

206

Forth 2012 RC1 A. Rationale

A.9.6.1.2275 THROW
If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had
returned it. In that case, the stack depth is the same as it was just before CATCH began execution.
The values of the i×x stack arguments could have been modified arbitrarily during the execution of
xt. In general, nothing useful may be done with those stack items, but since their number is known
(because the stack depth is deterministic), the application may DROP them to return to a predictable
stack state.

Typical use:

: could-fail (-- char)
KEY DUP [CHAR] Q = IF 1 THROW THEN ;

: do-it (a b -- c) 2DROP could-fail ;

: try-it (--)
1 2 [’] do-it CATCH IF

(x1 x2) 2DROP ." There was an exception" CR
ELSE ." The character was " EMIT CR
THEN

;

; retry-it (--)
BEGIN 1 2 [’] do-it CATCH WHILE

(x1 x2) 2DROP ." Exception, keep trying" CR
REPEAT (char)
." The character was " EMIT CR

;

A.10 The optional Facility word set

A.10.6 Glossary

A.10.6.1.1755 KEY?
The Committee has gone around several times on the stack effects. Whatever is decided will violate
somebody’s practice and penalize some machine. This way doesn’t interfere with type-ahead on
some systems, while requiring the implementation of a single-character buffer on machines where
polling the keyboard inevitably results in the destruction of the character.

Use of KEY or KEY? indicates that the application does not wish to process non-character events, so
they are discarded, in anticipation of eventually receiving a valid character. Applications wishing to
handle non-character events must use EKEY and EKEY?. It is possible to mix uses of KEY?/KEY and
EKEY?/EKEY within a single application, but the application must use KEY? and KEY only when it
wishes to discard non-character events until a valid character is received.

A.10.6.2.0135 +FIELD
+FIELD is not required to align items. This is deliberate and allows the construction of unaligned
data structures for communication with external elements such as a hardware register map or protocol
packet. Field alignment has been left to the appropriate xFIELD: definition.

207

A. Rationale Forth 2012 RC1

A.10.6.2.0763 BEGIN-STRUCTURE

There are two schools of thought regarding named data structures: name first and name last. The
name last school can define a named data structure as follows:

0 \ initial total byte count
1 CELLS +FIELD p.x \ A single cell filed named p.x
1 CELLS +FIELD p.y \ A single cell field named p.y

CONSTANT point \ save structure size

While the name first school would define the same data structure as:

BEGIN-STRUCTURE point \ create the named structure
1 CELLS +FIELD p.x \ A single cell filed named p.x
1 CELLS +FIELD p.y \ A single cell field named p.y

END-STRUCTURE

Although many systems provide a name first structure there is no common practice to the words used.
The words BEGIN-STRUCTURE and END-STRUCTURE have been defied as a means of providing
a portable notation that does not conflict with existing systems.

The field defining words (xFIELD: and +FIELD) are defined so they can be used by both schools.
Compatibility between the two schools comes from defining a new stack item struct-sys, which is
implementation dependent and can be 0 or more cells. The name first school would provide an
address (addr) as the struct-sys parameter, while the name last school would defined struct-sys as
being empty.

Executing the name of the data structure, returns the size of the data structure. This allows the data
stricture to be used within another data structure:

BEGIN-STRUCTURE point \ -- a-addr 0 ; -- lenp
FIELD: p.x \ -- a-addr cell
FIELD: p.y \ -- a-addr cell*2

END-STRUCTURE

BEGIN-STRUCTURE rect \ -- a-addr 0 ; -- lenr
point +FIELD r.tlhc \ -- a-addr cell*2
point +FIELD r.brhc \ -- a-addr cell*4

END-STRUCTURE

Alignment:
In practice, structures are used for two different purposes with incompatible requirements:

a) For collecting related internal-use data into a convenient “package” that can be referred to by
a single “handle”. For this use, alignment is important, so that efficient native fetch and store
instructions can be used.

b) For mapping external data structures like hardware register maps and protocol packets. For this
use, automatic alignment is inappropriate, because the alignment of the external data structure
often doesn’t match the rules for a given processor.

208

Forth 2012 RC1 A. Rationale

Many languages cater for the first use, but ignore the second. This leads to various customized
solutions, usage requirements, portability problems, bugs, etc. +FIELD is defined to be non-align-
ing, while the named field defining words (xFIELD:) are aligning. This is intentional and allows for
both uses.

The standard currently defines an aligned field defining word for each of the standard data types:

CFIELD: a character
FIELD: a native integer (single cell)

FFIELD: a native float
SFFIELD: a 32 bit float
DFFIELD: a 64 bit float

Although this is a sufficient set, most systems provide facilities to define field defining words for
standard data types.

Future:
The following cannot be defined until the required addressing has been defined. The names should
be considered reserved until then.

BFIELD: 1 byte (8 bit) field
WFIELD: 16 bit field
LFIELD: 32 bit field
XFIELD: 64 bit field

A.10.6.2.1305 EKEY
For some input devices, such as keyboards, more information is available than can be returned by a
single execution of KEY. EKEY provides a standard word to access a system-dependent set of events.

EKEY and EKEY? are implementation specific; no assumption can be made regarding the interaction
between the pairs EKEY/EKEY? and KEY/KEY?. This standard does not define a timing relationship
between KEY? and EKEY?. Undefined results may be avoided by using only one pairing of KEY/
KEY? or EKEY/EKEY? in a program for each input stream.

EKEY assumes no particular numerical correspondence between particular event code values and
the values representing standard characters. On some systems, this may allow two separate keys
that correspond to the same standard character to be distinguished from one another. A standard
program may only interpret the results of EKEY via the translation words provided for that purpose
(EKEY>CHAR and EKEY>FKEY).

See: A.6.1.1750 KEY, 10.6.2.1306 EKEY>CHAR and 10.6.2.1306.40 EKEY>FKEY.

A.10.6.2.1306 EKEY>CHAR
EKEY>CHAR translates a keyboard event into the corresponding member of the character set, if such
a correspondence exists for that event.

It is possible that several different keyboard events may correspond to the same character, and other
keyboard events may correspond to no character.

209

A. Rationale Forth 2012 RC1

A.10.6.2.1306.40 EKEY>FKEY
This words has been provided to allow for systems which may not be able to interpret the value
returned from EKEY directly. A simple implementation for a system which is capable of interpreting
the value returned from EKEY would be:

: EKEY>FKEY (u1 -- u2 flag)
DUP EKEY>CHAR NIP 0= ;

The value returned from EKEY>FKEY can be interpreted via a set of pre-defined constants and
masks. This provides the application programmer with the ability to process the non-ASCII keys in
a standard way. Note however, that not all keyboards provide these keys. Indeed, some devices will
not have a keyboard. A standard program should be written in such a way that they will continue to
work without these additional keys. Albeit with a limited or reduced functionality.

The K-. . . words produce the same values that the sequence EKEY EKEY>FKEY may produce when
the user presses the corresponding keys. Note that some systems may lack some of the keys, or the
system the capability to report them. Programs should be written such that they continue to work
(although less conveniently or with less functionality) if these key combinations cannot be produced.

Typical Use:

. . . EKEY EKEY>FKEY IF
CASE

K-UP OF . . . ENDOF
K-F1 OF . . . ENDOF
K-LEFT K-SHIFT-MASK OR K-CTRL-MASK OR OF . . . ENDOF
. . .

ENDCASE
ELSE

. . .
THEN

EKEY return values:
The intention behind EKEY was that it would return the implementation defined keyboard scan code.
The implementation defined nature of the value means that a standard program may not use the value
in any way, other than passing it on to EKEY>CHAR to convert it into an ASCII character.

EKEY>FKEY has been designed to be used in a similar manner. It provides an implementation
defined value which corresponds to non-ASCII keys, or a combination thereof. A standard program
may check which key combination has been used via a set of pre-defined constants.

Shift keys:
Note that, as defined, the shift key masks (10.6.2.1740.24 K-SHIFT-MASK,
10.6.2.1740.02 K-CTRL-MASK and 10.6.2.1740.01 K-ALT-MASK) are only useful for recognizing
shifted cursor and function keys, because these are the only values defined for use with EKEY>FKEY.
E.g., a standard program cannot recognize ALT-T, because no EKEY return value for T has been de-
fined.

210

Forth 2012 RC1 A. Rationale

A.10.6.2.1325 EMIT?

An indefinite delay is a device related condition, such as printer off-line, that requires operator inter-
vention before the device will accept new data.

A.10.6.2.1518 FIELD:

Create an aligned single-cell field in a data structure.

The various xFIELD: words provide for different alignment and size allocation.

The xFIELD: words could be defined as:

: FIELD: (n1 "name" -- n2 ; addr1 -- addr2) ALIGNED 1 CELLS +FIELD ;
: CFIELD: (n1 "name" -- n2 ; addr1 -- addr2) 1 CHARS +FIELD ;
: FFIELD: (n1 "name" -- n2 ; addr1 -- addr2) FALIGNED 1 FLOATS +FIELD ;
: SFFIELD: (n1 "name" -- n2 ; addr1 -- addr2) SFALIGNED 1 SFLOATS +FIELD ;
: DFFIELD: (n1 "name" -- n2 ; addr1 -- addr2) DFALIGNED 1 DFLOATS +FIELD ;

A.10.6.2.1905 MS

Although their frequencies vary, every system has a clock. Since many programs need to time
intervals, this word is offered. Use of milliseconds as an internal unit of time is a practical “least
common denominator” external unit. It is assumed implementors will use “clock ticks” (whatever
size they are) as an internal unit and convert as appropriate.

A.10.6.2.2292 TIME&DATE

Most systems have a real-time clock/calendar. This word gives portable access to it.

A.11 The optional File-Access word set

A.11.3 Additional usage requirements

A.11.3.2 Blocks in files

Many systems reuse file identifiers; when a file is closed, a subsequently opened file may be given the same
identifier. If the original file has blocks still in block buffers, these will be incorrectly associated with the
newly opened file with disastrous results. The block buffer system must be flushed to avoid this.

A.11.6 Glossary

A.11.6.1.0765 BIN

Some operating systems require that files be opened in a different mode to access their contents as
an unstructured stream of binary data rather than as a sequence of lines.

The arguments to READ-FILE and WRITE-FILE are arrays of character storage elements, each
element consisting of at least 8 bits. The Committee intends that, in BIN mode, the contents of these
storage elements can be written to a file and later read back without alteration.

A.11.6.1.1010 CREATE-FILE

Typical use:

: X . . . S" TEST.FTH" R/W CREATE-FILE ABORT" CREATE-FILE FAILED" ;

211

A. Rationale Forth 2012 RC1

A.11.6.1.1717 INCLUDE-FILE
Here are two implementation alternatives for saving the input source specification in the presence of
text file input:

1) Save the file position (as returned by FILE-POSITION) of the beginning of the line being
interpreted. To restore the input source specification, seek to that position and re-read the line
into the input buffer.

2) Allocate a separate line buffer for each active text input file, using that buffer as the input
buffer. This method avoids the “seek and reread” step, and allows the use of “pseudo-files”
such as pipes and other sequential-access-only communication channels.

A.11.6.1.1718 INCLUDED
Typical use: . . . S" filename" INCLUDED . . .

A.11.6.1.1970 OPEN-FILE
Typical use:

: X . . . S" TEST.FTH" R/W OPEN-FILE ABORT" OPEN-FILE FAILED" . . . ;

A.11.6.1.2080 READ-FILE
A typical sequential file-processing algorithm might look like:

BEGIN ()
... READ-FILE THROW (length)

?DUP WHILE (length)
... ()

REPEAT ()

In this example, THROW is used to handle exception conditions, which are reported as non-zero values
of the ior return value from READ-FILE. End-of-file is reported as a zero value of the “length” return
value.

A.11.6.1.2090 READ-LINE
Implementations are allowed to store the line terminator in the memory buffer in order to allow the
use of line reading functions provided by host operating systems, some of which store the terminator.
Without this provision, a temporary buffer might be needed. The two-character limitation is sufficient
for the vast majority of existing operating systems. Implementations on host operating systems
whose line terminator sequence is longer than two characters may have to take special action to
prevent the storage of more than two terminator characters.

Standard Programs may not depend on the presence of any such terminator sequence in the buffer.

A typical line-oriented sequential file-processing algorithm might look like:

BEGIN ()
... READ-LINE THROW (length not-eof-flag)

WHILE (length)
... ()

REPEAT DROP ()

212

Forth 2012 RC1 A. Rationale

READ-LINE needs a separate end-of-file flag because empty (zero-length) lines are a routine occur-
rence, so a zero-length line cannot be used to signify end-of-file.

A.11.6.1.2165 S"

Typical use: . . . S" ccc" . . .

The interpretation semantics for S" are intended to provide a simple mechanism for entering a string
in the interpretation state. Since an implementation may choose to provide only one buffer for
interpreted strings, an interpreted string is subject to being overwritten by the next execution of S"
in interpretation state. It is intended that no standard words other than S" should in themselves
cause the interpreted string to be overwritten. However, since words such as EVALUATE, LOAD,
INCLUDE-FILE and INCLUDED can result in the interpretation of arbitrary text, possibly including
instances of S", the interpreted string may be invalidated by some uses of these words.

When the possibility of overwriting a string can arise, it is prudent to copy the string to a “safe”
buffer allocated by the application.

A.11.6.2.1714 INCLUDE

Typical use:

INCLUDE filename

A.11.6.2.2144.10 REQUIRE

Typical use:

REQUIRE filename

A.11.6.2.2144.50 REQUIRED

Typical use:

S" filename" REQUIRED

A.12 The optional Floating-Point word set

The current base for floating-point input must be DECIMAL. Floating-point input is not allowed in an
arbitrary base. All floating-point numbers to be interpreted by a standard system must contain the expo-
nent indicator “E” (see 12.3.7 Text interpreter input number conversion). Consensus in the Committee
deemed this form of floating-point input to be in more common use than the alternative that would have
a floating-point input mode that would allow numbers with embedded decimal points to be treated as
floating-point numbers.

Although the format and precision of the significand and the format and range of the exponent of a floating-
point number are implementation defined in Forth-2012, the Floating-Point Extensions word set contains
the words DF@, SF@, DF!, and SF! for fetching and storing double- and single-precision IEEE floating-
point-format numbers to memory. The IEEE floating-point format is commonly used by numeric math
co-processors and for exchange of floating-point data between programs and systems.

213

A. Rationale Forth 2012 RC1

A.12.3 Additional usage requirements

A.12.3.5 Address alignment

In defining custom floating-point data structures, be aware that CREATE doesn’t necessarily leave the data
space pointer aligned for various floating-point data types. Programs may comply with the requirement for
the various kinds of floating-point alignment by specifying the appropriate alignment both at compile-time
and execution time. For example:

: FCONSTANT (F: r --)
CREATE FALIGN HERE 1 FLOATS ALLOT F!
DOES> (F: -- r) FALIGNED F@ ;

A.12.3.7 Text interpreter input number conversion

The Committee has more than once received the suggestion that the text interpreter in Standard Forth
systems should treat numbers that have an embedded decimal point, but no exponent, as floating-point
numbers rather than double cell numbers. This suggestion, although it has merit, has always been voted
down because it would break too much existing code; many existing implementations put the full digit
string on the stack as a double number and use other means to inform the application of the location of the
decimal point.

A.12.6 Glossary

A.12.6.1.0558 >FLOAT

>FLOAT enables programs to read floating-point data in legible ASCII format. It accepts a much
broader syntax than does the text interpreter since the latter defines rules for composing source
programs whereas >FLOAT defines rules for accepting data. >FLOAT is defined as broadly as is
feasible to permit input of data from Forth-2012 systems as well as other widely used standard
programming environments.

This is a synthesis of common FORTRAN practice. Embedded spaces are explicitly forbidden in
much scientific usage, as are other field separators such as comma or slash.

While >FLOAT is not required to treat a string of blanks as zero, this behavior is strongly encouraged,
since a future version of this standard may include such a requirement.

A.12.6.1.1492 FCONSTANT

Typical use: r FCONSTANT name

A.12.6.1.1552 FLITERAL

Typical use: : X . . . [. . . (r)] FLITERAL . . . ;

A.12.6.1.1630 FVARIABLE

Typical use: FVARIABLE name

A.12.6.1.2143 REPRESENT

This word provides a primitive for floating-point display. Some floating-point formats, including
those specified by IEEE-754, allow representations of numbers outside of an implementation-defined
range. These include plus and minus infinities, denormalized numbers, and others. In these cases we

214

Forth 2012 RC1 A. Rationale

expect that REPRESENT will usually be implemented to return appropriate character strings, such
as “+infinity” or “nan”, possibly truncated.

A.12.6.2.1427 F.
For example, 1E3 F. displays 1000.

A.12.6.2.1489 FATAN2
FSINCOS and FATAN2 are a complementary pair of operators which convert angles to 2-vectors
and vice-versa. They are essential to most geometric and physical applications since they correctly
and unambiguously handle this conversion in all cases except null vectors, even when the tangent of
the angle would be infinite.

FSINCOS returns a Cartesian unit vector in the direction of the given angle, measured counter-
clockwise from the positive X-axis. The order of results on the stack, namely y underneath x, permits
the 2-vector data type to be additionally viewed and used as a ratio approximating the tangent of the
angle. Thus the phrase FSINCOS F/ is functionally equivalent to FTAN, but is useful over only a
limited and discontinuous range of angles, whereas FSINCOS and FATAN2 are useful for all angles.

The argument order for FATAN2 is the same, converting a vector in the conventional representation
to a scalar angle. Thus, for all angles, FSINCOS FATAN2 is an identity within the accuracy of the
arithmetic and the argument range of FSINCOS. Note that while FSINCOS always returns a valid
unit vector, FATAN2 will accept any non-null vector. An ambiguous condition exists if the vector
argument to FATAN2 has zero magnitude.

A.12.6.2.1516 FEXPM1
This function allows accurate computation when its arguments are close to zero, and provides a useful
base for the standard exponential functions. Hyperbolic functions such as sinh(x) can be efficiently
and accurately implemented by using FEXPM1; accuracy is lost in this function for small values of x
if the word FEXP is used.

An important application of this word is in finance; say a loan is repaid at 15% per year; what is the
daily rate? On a computer with single-precision (six decimal digit) accuracy:

1. Using FLN and FEXP:

FLN of 1.15 = 0.139762,
divide by 365 = 3.82910E-4,
form the exponent using FEXP = 1.00038, and
subtract one (1) and convert to percentage = 0.038%.

Thus we only have two-digit accuracy.

2. Using FLNP1 and FEXPM1:

FLNP1 of 0.15 = 0.139762, (this is the same value as in the first example, although with the
argument closer to zero it may not be so)
divide by 365 = 3.82910E-4,
form the exponent and subtract one (1) using FEXPM1 = 3.82983E-4, and
convert to percentage = 0.0382983%.

This is full six-digit accuracy.

215

A. Rationale Forth 2012 RC1

This allows the hyperbolic functions to be computed with usable accuracy. For example, the hyper-
bolic sine can be defined as:

: FSINH (r1 -- r2)
FEXPM1 FDUP FDUP 1.0E0 F+ F/ F+ 2.0E0 F/ ;

A.12.6.2.1554 FLNP1

This function allows accurate compilation when its arguments are close to zero, and provides a useful
base for the standard logarithmic functions. For example, FLN can be implemented as:

: FLN 1.0E0 F- FLNP1 ;

See: A.12.6.2.1516 FEXPM1.

A.12.6.2.1640 F~

This provides the three types of “floating point equality” in common use — “close” in absolute terms,
exact equality as represented, and “relatively close”.

A.13 The optional Locals word set

A.13.3 Additional usage requirements

Rule 13.3.3.2d could be relaxed without affecting the integrity of the rest of this structure. 13.3.3.2c could
not be.

13.3.3.2b forbids the use of the data stack for local storage because no usage rules have been articulated
for programmer users in such a case. Of course, if the data stack is somehow employed in such a way that
there are no usage rules, then the locals are invisible to the programmer, are logically not on the stack, and
the implementation conforms.

Access to previously declared local variables is prohibited by Section 13.3.3.2d until any data placed onto
the return stack by the application has been removed, due to the possible use of the return stack for storage
of locals.

Authorization for a Standard Program to manipulate the return stack (e.g., via >R R>) while local variables
are active overly constrains implementation possibilities. The consensus of users of locals was that Local
facilities represent an effective functional replacement for return stack manipulation, and restriction of
standard usage to only one method was reasonable.

Access to Locals within DO. . .LOOPs is expressly permitted as an additional requirement of conforming
systems by Section 13.3.3.2g. Although words, such as (LOCAL), written by a System Implementor, may
require inside knowledge of the internal structure of the return stack, such knowledge is not required of a
user of compliant Forth systems.

A.13.6 Glossary

A.13.6.2.2550 {:

The Forth 94 Technical Committee were unable to identify any common practice for locals. They
provided a way to define locals and a method of parsing them in the hope that a common practice
would emerge.

216

Forth 2012 RC1 A. Rationale

Since then, common practice has emerged. Most implementations that provide (LOCAL) and
LOCALS| also provide some form of the { . . . } notation; however, the phrase { . . . } conflicts
with other systems. The {: . . . :} notation is a compromise to avoid name conflicts.

The notation provides for different kinds of local: those that are initialized from the data stack at
run-time, uninitialized locals, and outputs. Initialized locals are separated from uninitialized locals
by ‘|’. The definition of locals is terminated by ‘--’ or ‘:}’.

All text between ‘--’ and ‘:}’ is ignored. This eases documentation by allowing a complete stack
comment in the locals definition.

The ‘|’ (ASCII $7C) character is widely used as the separator between local arguments and local
values. Some implementations have used ‘\’ (ASCII $5C) or ‘¦’ ($A6). Systems are free to con-
tinue to provide these alternative separators. However, only the recognition of the ‘|’ separator is
mandatory. Therefore portable programs must use the ‘|’ separator.

A number of systems extend the locals notation in various ways. Some of these extensions may
emerge as common practice. This standard has reserved the notation used by these extensions to
avoid difficulties when porting code to these systems. In particular local names ending in ‘:’ (colon),
‘[’ (open bracket), or ‘^’ (caret) are reserved.

A.14 The optional Memory-Allocation word set
The Memory-Allocation word set provides a means for acquiring memory other than the contiguous data
space that is allocated by ALLOT. In many operating system environments it is inappropriate for a process
to pre-allocate large amounts of contiguous memory (as would be necessary for the use of ALLOT). The
Memory-Allocation word set can acquire memory from the system at any time, without knowing in advance
the address of the memory that will be acquired.

A.15 The optional Programming-Tools word set
These words have been in widespread common use since the earliest Forth systems.

Although there are environmental dependencies intrinsic to programs using an assembler, virtually all Forth
systems provide such a capability. Insofar as many Forth programs are intended for real-time applications
and are intrinsically non-portable for this reason, the Committee believes that providing a standard window
into assemblers is a useful contribution to Forth programmers.

Similarly, the programming aids DUMP, etc., are valuable tools even though their specific formats will differ
between CPUs and Forth implementations. These words are primarily intended for use by the programmer,
and are rarely invoked in programs.

One of the original aims of Forth was to erase the boundary between “user” and “programmer” — to give
all possible power to anyone who had occasion to use a computer. Nothing in the above labeling or remarks
should be construed to mean that this goal has been abandoned.

A.15.6 Glossary

217

A. Rationale Forth 2012 RC1

A.15.6.1.0220 .S

.S is a debugging convenience found on almost all Forth systems. It is universally mentioned in
Forth texts.

A.15.6.1.2194 SEE

SEE acts as an on-line form of documentation of words, allowing modification of words by decom-
piling and regenerating with appropriate changes.

A.15.6.1.2465 WORDS

WORDS is a debugging convenience found on almost all Forth systems. It is universally referred to
in Forth texts.

A.15.6.2.0470 ;CODE

Typical use: : namex . . . 〈create〉 . . . ;CODE . . .

where namex is a defining word, and 〈create〉 is CREATE or any user defined word that calls
CREATE.

A.15.6.2.0930 CODE

Some Forth systems implement the assembly function by adding an ASSEMBLER word list to the
search order, using the text interpreter to parse a postfix assembly language with lexical characteris-
tics similar to Forth source code. Typically, in such systems, assembly ends when a word END-CODE
is interpreted.

A.15.6.2.1015 CS-PICK

The intent is to copy a dest on the control-flow stack so that it can be resolved more than once. For
example:

\ Conditionally transfer control to beginning of
\ loop. This is similar in spirit to C’s "continue"
\ statement.

: ?REPEAT (dest -- dest) \ Compilation
(flag --) \ Execution

0 CS-PICK POSTPONE UNTIL
; IMMEDIATE

: XX (--) \ Example use of ?REPEAT
BEGIN
...

flag ?REPEAT (Go back to BEGIN if flag is false)
...

flag ?REPEAT (Go back to BEGIN if flag is false)
...

flag UNTIL (Go back to BEGIN if flag is false)
;

218

Forth 2012 RC1 A. Rationale

A.15.6.2.1020 CS-ROLL

The intent is to modify the order in which the origs and dests on the control-flow stack are to be
resolved by subsequent control-flow words. For example, WHILE could be implemented in terms of
IF and CS-ROLL, as follows:

: WHILE (dest -- orig dest)
POSTPONE IF 1 CS-ROLL

; IMMEDIATE

A.15.6.2.1580 FORGET

Typical use: . . . FORGET name . . .

FORGET name tries to infer the previous dictionary state from name; this is not always possible. As
a consequence, FORGET name removes name and all following words in the name space.

See A.6.2.1850 MARKER.

A.15.6.2.1908 N>R

An implementation may store the stack items in any manner. It may store them on the return stack,
in any order. A stack-constrained system may prefer to use a buffer to store the items and place a
reference to the buffer on the return stack.

See: 6.2.2182 SAVE-INPUT, 6.2.2148 RESTORE-INPUT, 16.6.1.1647 GET-ORDER,
16.6.1.2197 SET-ORDER.

A.15.6.2.2531 [ELSE]

Typical use: . . . flag [IF] . . . [ELSE] . . . [THEN] . . .

A.15.6.2.2532 [IF]

Typical use: . . . flag [IF] . . . [ELSE] . . . [THEN] . . .

A.15.6.2.2533 [THEN]

Typical use: . . . flag [IF] . . . [ELSE] . . . [THEN] . . .

Software that runs in several system environments often contains some source code that is environ-
mentally dependent. Conditional compilation — the selective inclusion or exclusion of portions of
the source code at compile time — is one technique that is often used to assist in the maintenance of
such source code.

Conditional compilation is sometimes done with “smart comments” — definitions that either skip or
do not skip the remainder of the line based on some test. For example:

\ If 16-Bit? contains TRUE, lines preceded by 16BIT\
\ will be skipped. Otherwise, they will not be skipped.

VARIABLE 16-BIT?

: 16BIT\ (--) 16-BIT? @ IF POSTPONE \ THEN
; IMMEDIATE

This technique works on a line by line basis, and is good for short, isolated variant code sequences.

219

A. Rationale Forth 2012 RC1

More complicated conditional compilation problems suggest a nestable method that can encompass
more than one source line at a time. The words included in the optional Programming tools exten-
sions word set are useful for this purpose.

A.16 The optional Search-Order word set

The search-order word set is intended to be a portable “construction set” from which search-order words
may be built. ALSO / ONLY or the various “vocabulary” schemes supported by the major Forth vendors
can be defined in terms of the primitive search-order word set.

The encoding for word list identifiers wid might be a small-integer index into an array of word-list defi-
nition records, the data-space address of such a record, a user-area offset, the execution token of a sealed
vocabulary, the link-field address of the first definition in a word list, or anything else. It is entirely up to
the system implementor.

A.16.2 Additional terms and notation

search order

Note that the use of the term “list” does not necessarily imply implementation as a linked list

A.16.3 Additional usage requirements

A.16.3.3 Finding definition names

In other words, the following is not guaranteed to work:

: FOO ... [... SET-CURRENT] ... RECURSE ...
; IMMEDIATE

RECURSE, ; (semicolon), and IMMEDIATE may or may not need information stored in the compilation
word list.

A.16.6 Glossary

A.16.6.1.2192 SEARCH-WORDLIST

When SEARCH-WORDLIST fails to find the word, it does not return the string, unlike FIND. This
is in accordance with the general principle that Forth words consume their arguments.

A.17 The optional String word set

A.17.6 Glossary

A.17.6.1.0245 /STRING

/STRING is used to remove or add characters relative to the current position in the character string.
Positive values of n will exclude characters from the string while negative values of n will include
characters to the left of the string.

S" ABC" 2 /STRING 2DUP TYPE \ outputs “C”
-1 /STRING TYPE \ outputs “BC”

220

Forth 2012 RC1 A. Rationale

A.17.6.1.0910 CMOVE
If c-addr2 lies within the source region (i.e., when c-addr2 is not less than c-addr1 and c-addr2 is less
than the quantity c-addr1 u CHARS +), memory propagation occurs.

Assume a character string at address 100: “ABCD”. Then after

100 DUP CHAR+ 3 CMOVE

the string at address 100 is “AAAA”.

See A.6.1.1900 MOVE.

A.17.6.1.0920 CMOVE>
If c-addr1 lies within the destination region (i.e., when c-addr1 is greater than or equal to c-addr2 and
c-addr2 is less than the quantity c-addr1 u CHARS +), memory propagation occurs.

Assume a character string at address 100: “ABCD”. Then after

100 DUP CHAR+ SWAP 3 CMOVE>

the string at address 100 is “DDDD”.

See A.6.1.1900 MOVE.

A.17.6.1.2212 SLITERAL
The current functionality of 6.1.2165 S" may be provided by the following definition:

: S" ("ccc<quote>" --)
[CHAR] " PARSE POSTPONE SLITERAL

; IMMEDIATE

A.17.6.2.2255 SUBSTITUTE
Many applications need to be able to perform text substitution, for example:

Your balance at 〈time〉 on 〈date〉 is 〈currencyvalue〉.

Translation of a sentence or message from one language to another may result in changes to the dis-
played parameter order. The example, the Afrikaans translation of this sentence requires a different
order:

Jou balans op 〈date〉 om 〈time〉 is 〈currencyvalue〉.

The words SUBSTITUTE and REPLACES provide for this requirements by defining a text substitu-
tion facility. For example, we can provide an initial string in the form:

Your balance at %time% on %date% is %currencyvalue%.

The % is used as delimiters for the substitution name. The text “currencyvalue”, “date” and
“time” are text substitutions, where the replacement text is defined by REPLACES:

: date S" 07/Nov/2012" ;
: time S" 18:21" ;
date S" date" REPLACES
time S" time" REPLACES

221

A. Rationale Forth 2012 RC1

The substitution name “date” is defined to be replaced with the string “07/Nov/2012” and “time” to
be replaced with “18:21”. Thus SUBSTITUTE would produce the string:

Your balance at 18:21 on 07/Nov/2012 is %currencyvalue%.

As the substitution name “currencyvalue” has not been defined, it is left unchanged in the resulting
string.

The return value n is positive {0 . . . +n} on success and indicates the number of substitutions made.
In the above example, this would be two. A negative value indicates that an error occurred. As
substitution is non-recursive, the return value could be used to provide a recursive substitution.

Implementation of SUBSTITUTE may be considered as being equivalent to a wordlist which is
searched. If the substitution name is found, the word is executed, returning a substitution string. Such
words can be deferred or multiple wordlists can be used. The implementation techniques required
are similar to those used by ENVIRONMENT?. There is no provision for changing the delimiter
character, although a system may provide system-specific extensions.

A.18 The optional Extended-Character word set
Forth defines graphic and control characters from the ASCII character set. ASCII was originally designed
for the English language. However, most western languages fit somewhat into the Forth framework, since
a single byte is sufficient to encode all characters in each language, although different languages may use
different encodings; Latin-1 and Latin-15 are widely used. For other languages, different character sets
have to be used, several of which are variable-width. Currently, the most popular representative of the
variable-width character sets is UTF-8.

Many Forth systems today are case insensitive, to accept lower case standard words. It is sufficient to
be case insensitive for the ASCII subset to make this work — this saves a large code mapping table for
comparison of other symbols. Case is mostly an issue of European languages (Latin, Greek, and Cyrillic),
but similar issues exist between traditional and simplified Chinese (finally being dealt with by Unihan), and
between different Latin code pages in the Universal Character Set (UCS), e.g., full width vs. normal half
width Latin letters.

Furthermore, UCS allows composition of glyphs and has direct encoding for composed glyphs, which look
the same, but have different encodings. This is not a problem for a Forth system to solve.

Some encodings (not UTF-8) might give surprises when you use a case insensitive ASCII-compare that’s
8-bit safe, but not aware of the current encoding.

The xchar wordset does not address problems that come from using multiple different encodings and
switching or converting between them. It is good practice for a system implementing xchar to support
UTF–8.

A.18.6 Glossary

A.18.6.2.0895 CHAR
The behavior of the extended version of CHAR is fully backward compatible with 6.1.0895 CHAR.

222

Forth 2012 RC1 B. Bibliography

Annex B
(informative)
Bibliography

Industry standards

Forth-77 Standard, Forth Users Group, FST-780314.
Forth-78 Standard, Forth International Standards Team.
Forth-79 Standard, Forth Standards Team.
Forth-83 Standard and Appendices, Forth Standards Team.

The standards referenced in this section were developed by the Forth Standards Team, a volunteer
group which included both implementors and users. This was a volunteer organization operating
under its own charter and without any formal ties to ANSI, IEEE or any similar standards body.

The following standards where developed under the auspices of ANSI. The committee drawing up
the ANSI standard included several members of the Forth Standards Team.

ANSI X3.215-1994 Information Systems — Programming Language FORTH
ISO/IEC 15145:1997 Information technology. Programming languages. FORTH

Books

Brodie, L. Thinking FORTH. Englewood Cliffs, NJ: Prentice Hall, 1984. Now available from
http://thinking-forth.sourceforge.net/

Brodie, L. Starting FORTH (2nd edition). Englewood Cliffs, NJ: Prentice Hall, 1987.

Feierbach, G. and Thomas, P. Forth Tools & Applications. Reston, VA: Reston Computer Books,
1985.

Haydon, Dr. Glen B. All About FORTH (3rd edition). La Honda, CA: 1990.

Kelly, Mahlon G. and Spies, N. FORTH: A Text and Reference. Englewood Cliffs, NJ: Prentice
Hall, 1986.

Knecht, K. Introduction to Forth. Indiana: Howard Sams & Co., 1982.

Koopman, P. Stack Computers, The New Wave. Chichester, West Sussex, England: Ellis Horwood
Ltd. 1989.

Martin, Thea, editor. A Bibliography of Forth References (3rd edition). Rochester, New York:
Institute of Applied Forth Research, 1987.

McCabe, C. K. Forth Fundamentals (2 volumes). Oregon: Dilithium Press, 1983.

Ouverson, Marlin, editor. Dr. Dobbs Toolbook of Forth. Redwood City, CA: M&T Press, Vol. 1,
1986; Vol. 2, 1987.

Pelc, Stephen. Programming Forth. Southampton, England: MicroProcessor Engineering Limited,
2005. http://www.mpeforth.com/arena/ProgramForth.pdf.

Pountain, R. Object Oriented Forth. London, England: Academic Press, 1987.

223

http://thinking-forth.sourceforge.net/
http://www.mpeforth.com/arena/ProgramForth.pdf

B. Bibliography Forth 2012 RC1

Rather, Elizabeth D. Forth Application Techniques. FORTH, Inc., 2006. ISBN: 978-0966215618.

Rather, Elizabeth D. and Conklin, Edward K. Forth Programmer’s Handbook (3rd edition).
BookSurge Publishing, 2007. ISBN: 978-1419675492.

Terry, J. D. Library of Forth Routines and Utilities. New York: Shadow Lawn Press, 1986.

Tracy, M. and Anderson, A. Mastering FORTH (revised edition). New York: Brady Books, 1989.

Winfield, A. The Complete Forth. New York: Wiley Books, 1983.

Journals, magazines and newsletters

Forsley, Lawrence P., Conference Chairman. Rochester Forth Conference Proceedings. Rochester,
New York: Institute of Applied Forth Research, 1981 to present.

Forsley, Lawrence P., Editor-in-Chief. The Journal of Forth Application and Research. Rochester,
New York: Institute of Applied Forth Research, 1983 to present.

Frenger, Paul, editor. SIGForth Newsletter. New York, NY: Association for Computing Machinery,
1989 to present.

Ouverson, Marlin, editor. Forth Dimensions. San Jose, CA: The Forth Interest Group, 1978 to
present.

Reiling, Robert, editor. FORML Conference Proceedings. San Jose, CA: The Forth Interest Group,
1980 to present.

Ting, Dr. C. H., editor. More on Forth Engines. San Mateo, CA: Offete Enterprises, 1986 to
present.

Selected articles

Hayes, J.R. “Postpone” Proceedings of the 1989 Rochester Forth Conference. Rochester, New
York: Institute for Applied Forth Research, 1989.

Kelly, Guy M. “Forth”. McGraw-Hill Personal Computer Programming Encyclopedia — Lan-
guages and Operation Systems. New York: McGraw-Hill, 1985.

Kogge, P. M. “An Architectural Trail to Threaded Code Systems”. IEEE Computer (March, 1982).

Moore, C. H. “The Evolution of FORTH — An Unusual Language”. Byte (August 1980).

Rather, E. D. “Forth Programming Language”. Encyclopedia of Physical Science & Technology
(Vol. 5). New York: Academic Press, 1987.

Rather, E. D. “FORTH”. Computer Programming Management. Auerbach Publishers, Inc., 1985.

Rather, E. D.; Colburn, D. R.; Moore, C. H. “The Evolution of Forth”. ACM SIGPLAN Notices
(Vol. 28, No. 3, March 1993).

224

Forth 2012 RC1 C. Compatibility analysis

Annex C
(informative)

Compatibility analysis
Before this standard, there were several industry standards for Forth. The most influential are listed here in
chronological order, along with the major differences between this standard and the most recent, Forth 94.

C.1 FIG Forth (circa 1978)

FIG Forth was a “model” implementation of the Forth language developed by the Forth Interest Group
(FIG). In FIG Forth, a relatively small number of words were implemented in processor-dependent ma-
chine language and the rest of the words were implemented in Forth. The FIG model was placed in the
public domain, and was ported to a wide variety of computer systems. Because the bulk of the FIG Forth
implementation was the same across all machines, programs written in FIG Forth enjoyed a substantial
degree of portability, even for “system-level” programs that directly manipulate the internals of the Forth
system implementation.

FIG Forth implementations were influential in increasing the number of people interested in using Forth.
Many people associate the implementation techniques embodied in the FIG Forth model with “the nature
of Forth”.

However, FIG Forth was not necessarily representative of commercial Forth implementations of the same
era. Some of the most successful commercial Forth systems used implementation techniques different from
the FIG Forth “model”.

C.2 Forth 79

The Forth-79 Standard resulted from a series of meetings from 1978 to 1980, by the Forth Standards Team,
an international group of Forth users and vendors (interim versions known as Forth 77 and Forth 78 were
also released by the group).

Forth 79 described a set of words defined on a 16-bit, twos-complement, unaligned, linear byte-addressing
virtual machine. It prescribed an implementation technique known as “indirect threaded code”, and used
the ASCII character set.

The Forth-79 Standard served as the basis for several public domain and commercial implementations,
some of which are still available and supported today.

C.3 Forth 83

The Forth-83 Standard, also by the Forth Standards Team, was released in 1983. Forth 83 attempted to fix
some of the deficiencies of Forth 79.

Forth 83 was similar to Forth 79 in most respects. However, Forth 83 changed the definition of several
well-defined features of Forth 79. For example, the rounding behavior of integer division, the base value
of the operands of PICK and ROLL, the meaning of the address returned by ’, the compilation behavior
of ’, the value of a “true” flag, the meaning of NOT, and the “chaining” behavior of words defined by
VOCABULARY were all changed. Forth 83 relaxed the implementation restrictions of Forth 79 to allow

225

C. Compatibility analysis Forth 2012 RC1

any kind of threaded code, but it did not fully allow compilation to native machine code (this was not
specifically prohibited, but rather was an indirect consequence of another provision).

Many new Forth implementations were based on the Forth-83 Standard, but few “strictly compliant” Forth-
83 implementations exist.

Although the incompatibilities resulting from the changes between Forth 79 and Forth 83 were usually
relatively easy to fix, a number of successful Forth vendors did not convert their implementations to be
Forth 83 compliant. For example, the most successful commercial Forth for Apple Macintosh computers
is based on Forth 79.

C.4 ANS Forth (1994)

In the mid to late 1980s the computer industry underwent a rapid and profound change. The personal-
computer market matured into a business and commercial market, while the market for ROM-based em-
bedded control computers grew substantially. Improvements in custom processor design allowed for the
development of numerous “Forth chips,” customized for the execution of the Forth language.

In order to take full advantage of evolving technology, many Forth implementations ignored some of the
restrictions imposed by the implied “virtual machine” of previous standards. The ANS Forth committee
was formed in 1987 to address the fragmentation within the Forth community caused not only by the
difference between Forth 79 and Forth 83 but the exploitation of technical developments.

The committee undertook a comprehensive review of a variety of existing implementations, especially
those with substantial user bases and/or considerable success in the market place. This allowed them to
identify and document features common to these systems, many of which had not been included in any
previous standard.

The committee chose to move away from prescribing stringent requirements as previous standards had, with
the specification of a virtual machine. It preferred to describe the operation of the virtual machine, without
reference to its implementation, thus allowing an implementor to take full advantage of any technical
developments while providing the developer with a complete list of entitlements.

This required the identification of implicit assumptions made by the previous standards, making them
explicit and abstracting them into more general concepts where possible. A good example of this is the
size of an item on the stack. In previous standards this was assumed to be 16-bits wide. This was no longer
a valid assumption. ANS Forth introduced the concept of the cell, allowing the an implementation to use a
stack size most suited to the environment.

This was the most comprehensive review of Forth systems to date, taking eighty seven days covering twenty
three meetings over eight years. The inclusive nature of the standard allowed the various factions within
the community to unify in support of ANS Forth, with many systems providing a comparability layer.

The American National Standards Institution (ANSI) published the ANS Forth Standard in 1994 with the
title “ANSI X3.215-1994 Information Systems — Programming Language FORTH”. This is referenced
throughout this document as Forth 94.

226

Forth 2012 RC1 C. Compatibility analysis

C.5 ISO Forth (1997)

ANSI submitted the Forth 94 Standard to the ISO (International Organization for Standardization) and IEC
(International Electrotechnical Commission) joint committee for consideration as an international standard.
The ISO/IEC adopted the Forth 94 document as an international standard in 1997, publishing it under the
title “ISO/IEC 15145:1997 Information technology. Programming languages. FORTH”.

C.6 Approach of this Standard

During a workshop on the Forth standard at the EuroForth conference in 2004 it was agreed that the Forth
94 required updating.

A committee was formed and agreed that the process should be as open as possible, adopting the Usenet
RfD/CfV (Request for Discussion/Call for Votes) process to produce semi-formal proposals for changes
to the standard. In addition to general discussion on the comp.lang.forth usenet news group, a
moderated mailing list (with public archive) was created for those who do not follow the news group.
Standards meetings to discuss CfVs were held in public in conjunction with the EuroForth conference.

The work of the Forth 94 Committee was the basis of this standard, informally called Forth 200x. The
aim of the Forth 200x committee is to produce a rolling document, with the standard constantly being up-
dated based on discussion of proposals and the corresponding votes. A snapshot document is occasionally
produced, with this document being the first.

The Forth 200x committee defined a procedure for proposals. In addition to the formal text of the proposal,
they had to include: the rationale behind the change; a reference implementation, or a description of the
reason a reference implementation cannot be presented; unit testing for the proposed change, especially for
border conditions. See Proposals Process (page viii) for a full description.

C.7 Differences from Forth 94

C.7.1 Removed Obsolete Words

This standard removes six words that were marked ‘obsolescent’ in the Forth 94 document. These are:

6.2.0060 #TIB 6.2.1390 EXPECT 6.2.2240 SPAN
6.2.0970 CONVERT 6.2.2040 QUERY 6.2.2290 TIB

C.7.2 Obsolescent features

This standard has designated the following practice as obsolescent:

– Requiring floating-point numbers to be kept on the data stack. (This has always been an environ-
mental dependency.)

– Using ENVIRONMENT? to enquire whether a word set is present.

227

C. Compatibility analysis Forth 2012 RC1

Editor:
This is a list of proposals accepted into the Forth 200x document since we began work in 2005.
Wording only

These proposals changed wording to clarify the text, but did not actually change the meaning of the
document:

x:namelen x:to x:ekey
New Words

These proposals added new words to the document. These changes are catered for in by section C.8
Additional words:

x:ftrunc x:buffer x:substitute x:xchar x:synonym x:escaped-strings
x:n-to-r x:structures x:2value x:fvalue x:structures x:required
x:ekeys x:defined x:parse-name x:deferred

Normative Changes
These proposals have normative changes that require documentation:

– x:enhanced-locals Minimum number of locals now sixteen
– x:block Multi-tasking Block Buffers
– x:source-id FILE-POSITION during interpretation
– x:fasinh Removed restriction from FASINH
– x:fatan2 Ambiguity in FATAN2
– x:fp-stack Separate FP Stack
– x:key-ekey Chars now unsigned / Added primitive characters
– x:number-prefix
– x:throw-iors Lots of new throw codes
– x:legacy Obsolete words removed
– x:wordset-query

Descriptions of these changes and their effect on existing programs need to be included.

C.8 Additional words
The following words have been added to the standard:

C.8.6 Core word sets

The following words have been added to 6.2 Core extension words:

6.2.0698 ACTION-OF
6.2.0825 BUFFER:
6.2.1173 DEFER

6.2.1175 DEFER!
6.2.1177 DEFER@
6.2.1675 HOLDS

6.2.1725 IS
6.2.2020 PARSE-NAME
6.2.2266 S\"

C.8.7 Block word sets

No words have been added to 7 The optional Block word set.

C.8.8 Double-Number word sets

The following words have been added to 8.6.2 Double-Number extension words:

8.6.2.0435 2VALUE

228

Forth 2012 RC1 C. Compatibility analysis

C.8.9 Exception word sets

No words have been added to 9 The optional Exception word set.

C.8.10 Facility word sets

The following words have been added to 10.6.2 Facility extension words:

10.6.2.0135 +FIELD
10.6.2.0763 BEGIN-STRUCTURE
10.6.2.0893 CFIELD:
10.6.2.1306.40 EKEY>FKEY
10.6.2.1336 END-STRUCTURE
10.6.2.1518 FIELD:
10.6.2.1740.01 K-ALT-MASK
10.6.2.1740.02 K-CTRL-MASK
10.6.2.1740.03 K-DELETE
10.6.2.1740.04 K-DOWN
10.6.2.1740.05 K-END

10.6.2.1740.06 K-F1
10.6.2.1740.07 K-F10
10.6.2.1740.08 K-F11
10.6.2.1740.09 K-F12
10.6.2.1740.10 K-F2
10.6.2.1740.11 K-F3
10.6.2.1740.12 K-F4
10.6.2.1740.13 K-F5
10.6.2.1740.14 K-F6
10.6.2.1740.15 K-F7
10.6.2.1740.16 K-F8

10.6.2.1740.17 K-F9
10.6.2.1740.18 K-HOME
10.6.2.1740.19 K-INSERT
10.6.2.1740.20 K-LEFT
10.6.2.1740.21 K-NEXT
10.6.2.1740.22 K-PRIOR
10.6.2.1740.23 K-RIGHT
10.6.2.1740.24 K-SHIFT-MASK
10.6.2.1740.25 K-UP

C.8.11 File-Access word sets

The following words have been added to 11.6.2 File-Access extension words:

11.6.2.1714 INCLUDE 11.6.2.2144.10 REQUIRE 11.6.2.2144.50 REQUIRED

C.8.12 Floating-Point word sets

The following words have been added to 12.6.2 Floating-Point extension words:

12.6.2.1207.40 DFFIELD:
12.6.2.1471 F>S
12.6.2.1517 FFIELD:

12.6.2.1627 FTRUNC
12.6.2.1628 FVALUE

12.6.2.2175 S>F
12.6.2.2206.40 SFFIELD:

C.8.13 Locals word sets

The following words have been added to 13.6.2 Locals extension words:

13.6.2.2550 {:

C.8.14 Memory-Allocation word sets

No words have been added to 14 The optional Memory-Allocation word set.

C.8.15 Programming-Tools word sets

The following words have been added to the 15.6.2 Programming-Tools extension words:

15.6.2.1908 N>R
15.6.2.1940 NR>

15.6.2.2264 SYNONYM
15.6.2.2530.30 [DEFINED]

15.6.2.2534 [UNDEFINED]

C.8.16 Search-Order word sets

No words have been added to 16 The optional Search-Order word set.

229

C. Compatibility analysis Forth 2012 RC1

C.8.17 String word sets

The following words have been added to the 17.6.2 String extension words:

17.6.2.2141 REPLACES 17.6.2.2255 SUBSTITUTE 17.6.2.2375 UNESCAPE

C.8.18 Extended Character word sets

The Extended Character word set was introduced by Forth-2012.

The following words make up 18 The optional Extended Characters wordset:

18.6.1.2486.50 X-SIZE
18.6.1.2487.10 XC!+
18.6.1.2487.15 XC!+?
18.6.1.2487.20 XC,

18.6.1.2487.25 XC-SIZE
18.6.1.2487.35 XC@+
18.6.1.2487.40 XCHAR+
18.6.1.2488.10 XEMIT

18.6.1.2488.30 XKEY
18.6.1.2488.35 XKEY?
18.6.2.0145 +X/STRING
18.6.2.0175 -TRAILING-GARBAGE

The following words make up 18.6.2 Extended Character extension words:

18.6.2.0895 CHAR
18.6.2.1306.60 EKEY>XCHAR
18.6.2.2008 PARSE

18.6.2.2486.70 X-WIDTH
18.6.2.2487.30 XC-WIDTH
18.6.2.2487.45 XCHAR-

18.6.2.2488.20 XHOLD
18.6.2.2495 X\STRING-
18.6.2.2520 [CHAR]

230

Forth 2012 RC1 D. Portability guide

Annex D
(informative)

Portability guide

D.1 Introduction
A primary goal of the this Standard is to enable a programmer to write Forth programs that work on a wide
variety of machines. This is accomplished by allowing some key Forth terms to be implementation defined
(e.g., cell size) and by providing Forth operators (words) that conceal the implementation. This allows
the implementor to produce the Forth system that most effectively uses the native hardware. The machine
independent operators, together with some programmer discipline, support program portability.

It can be difficult for someone familiar with only one machine architecture to imagine the problems
caused by transporting programs between dissimilar machines. This Annex provides guidelines for writ-
ing portable Forth programs. The first section describes ways to make a program hardware independent.
The second section describes assumptions about Forth implementations that many programmers make, but
can’t be relied upon in a portable program.

D.2 Hardware peculiarities

D.2.1 Data/memory abstraction

This Standard gives definitions for data and memory that apply to a wide variety of computers. These
definitions give us a way to talk about the common elements of data and memory while ignoring the details
of specific hardware. Similarly, Forth programs that use data and memory in ways that conform to these
definitions can also ignore hardware details. The following sections discuss the definitions and describe
how to write programs that are independent of the data and memory peculiarities of different computers.

D.2.2 Definitions

Three terms defined by this Standard are address unit, cell, and character.

The address space of a Forth system is divided into an array of address units; an address unit is the smallest
collection of bits that can be addressed. In other words, an address unit is the number of bits spanned by
the addresses addr and addr+1. The most prevalent machines use 8-bit address units, but other address unit
sizes exist.

In this Standard, the size of a cell is an implementation-defined number of address units. Forth implemented
on a 16-bit microprocessor could use a 16-bit cell and an implementation on a 32-bit machine could use a
32-bit cell. Less common cell sizes (e.g., 18-bit or 36-bit machines, etc.) could implement Forth systems
with their native cell sizes. In all of these systems, Forth words such as DUP and ! (store) do the same
things (duplicate the top cell on the stack and store the second cell into the address given by the first cell,
respectively).

Similarly, the definition of a character has been generalized to be an implementation-defined number of
address units (but at least eight bits). This removes the need for a Forth implementor to provide 8-bit
characters on processors where it is inappropriate. For example, on an 18-bit machine with a 9-bit address
unit, a 9-bit character would be most convenient. Since, by definition, you can’t address anything smaller

231

D. Portability guide Forth 2012 RC1

than an address unit, a character must be at least as big as an address unit. This will result in big characters
on machines with large address units. An example is a 16-bit cell addressed machine where a 16-bit
character makes the most sense.

D.2.3 Addressing memory

One of the most common portability problems is the addressing of successive cells in memory. Given the
memory address of a cell, how do you find the address of the next cell? On a byte-addressed machine
with 32-bit cells the code to find the next cell would be 4 +. The code would be 1+ on a cell-addressed
processor and 16 + on a bit-addressed processor with 16-bit cells. This Standard provides a next-cell
operator named CELL+ that can be used in all of these cases. Given an address, CELL+ adjusts the address
by the size of a cell (measured in address units).

A related problem is that of addressing an array of cells in an arbitrary order. This Standard provides a
portable scaling operator named CELLS. Given a number n, CELLS returns the number of address units
needed to hold n cells. Using CELLS, we can make a portable definition of an ARRAY defining word:

: ARRAY (u --) CREATE CELLS ALLOT
DOES> (u -- addr) SWAP CELLS + ;

There are also portability problems with addressing arrays of characters. In a byte-addressed machine, the
size of a character equals the size of an address unit. Addresses of successive characters in memory can
be found using 1+ and scaling indices into a character array is a no-op (i.e., 1 *). However, there could
be implementations where a character is larger than an address unit. The CHAR+ and CHARS operators,
analogous to CELL+ and CELLS are available to allow maximum portability.

This Standard generalizes the definition of some Forth words that operate on regions of memory to use
address units. One example is ALLOT. By prefixing ALLOT with the appropriate scaling operator (CELLS,
CHARS, etc.), space for any desired data structure can be allocated (see definition of array above). For
example:

CREATE ABUFFER 5 CHARS ALLOT (allot 5 character buffer)

D.2.4 Alignment problems

Some processors have restrictions on the addresses that can be used by memory access instructions. This
Standard does not require an implementor of a Forth to make alignment transparent; on the contrary, it
requires (in Section 3.3.3.1 Address alignment) that a Standard Forth program assume that character and
cell alignment may be required. One pitfall caused by alignment restrictions is in creating tables containing
both characters and cells. When , (comma) or C, is used to initialize a table, data are stored at the data-
space pointer. Consequently, it must be suitably aligned. For example, a non-portable table definition
would be:

CREATE ATABLE 1 C, X , 2 C, Y ,

On a machine that restricts memory fetches to aligned addresses, CREATE would leave the data space
pointer at an aligned address. However, the first C, would leave the data space pointer at an unaligned
address, and the subsequent , (comma) would violate the alignment restriction by storing X at an unaligned
address. A portable way to create the table is:

CREATE ATABLE 1 C, ALIGN X , 2 C, ALIGN Y ,

232

Forth 2012 RC1 D. Portability guide

ALIGN adjusts the data space pointer to the first aligned address greater than or equal to its current address.
An aligned address is suitable for storing or fetching characters, cells, cell pairs, or double-cell numbers.
After initializing the table, we would also like to read values from the table. For example, assume we
want to fetch the first cell, X, from the table. ATABLE CHAR+ gives the address of the first thing after the
character. However this may not be the address of X since we aligned the dictionary pointer between the
C, and the ,. The portable way to get the address of X is:

ATABLE CHAR+ ALIGNED

ALIGNED adjusts the address on top of the stack to the first aligned address greater than or equal to its
current value.

D.3 Number representation

D.3.1 Big endian vs. little endian

The constituent bits of a number in memory are kept in different orders on different machines. Some
machines place the most-significant part of a number at an address in memory with less-significant parts
following it at higher addresses; this is known as big-endian ording. Other machines do the opposite; the
least-significant part is stored at the lowest address (little-endian ordering).

For example, the following code for a 16-bit little endian Forth would produce the answer 1:

VARIABLE FOO 1 FOO ! FOO C@

The same code on a 16-bit big endian Forth would produce the answer 0. A portable program cannot
exploit the representation of a number in memory.

A related issue is the representation of cell pairs and double-cell numbers in memory. When a cell pair
is moved from the stack to memory with 2!, the cell that was on top of the stack is placed at the lower
memory address. It is useful and reasonable to manipulate the individual cells when they are in memory.

D.3.2 ALU organization

Different computers use different bit patterns to represent integers. Possibilities include binary represen-
tations (two’s complement, one’s complement, sign magnitude, etc.) and decimal representations (BCD,
etc.). Each of these formats creates advantages and disadvantages in the design of a computer’s arithmetic
logic unit (ALU). The most commonly used representation, two’s complement, is popular because of the
simplicity of its addition and subtraction operations.

Programmers who have grown up on two’s complement machines tend to become intimate with their
representation of numbers and take some properties of that representation for granted. For example, a trick
to find the remainder of a number divided by a power of two is to mask off some bits with AND. A common
application of this trick is to test a number for oddness using 1 AND. However, this will not work on a one’s
complement machine if the number is negative (a portable technique is 2 MOD).

The remainder of this section is a (non-exhaustive) list of things to watch for when portability between
machines with binary representations other than two’s complement is desired.

To convert a single-cell number to a double-cell number, Forth 94 provided the operator S>D. To convert
a double-cell number to single-cell, Forth programmers have traditionally used DROP. However, this trick

233

D. Portability guide Forth 2012 RC1

doesn’t work on sign-magnitude machines. For portability a D>S operator is available. Converting an
unsigned single-cell number to a double-cell number can be done portably by pushing a zero on the stack.

D.4 Forth system implementation

During Forth’s history, an amazing variety of implementation techniques have been developed. The ANS
Forth Standard encourages this diversity and consequently restricts the assumptions a user can make about
the underlying implementation of an ANS Forth system. Users of a particular Forth implementation fre-
quently become accustomed to aspects of the implementation and assume they are common to all Forths.
This section points out many of these incorrect assumptions.

D.4.1 Definitions

Traditionally, Forth definitions have consisted of the name of the Forth word, a dictionary search link, data
describing how to execute the definition, and parameters describing the definition itself. These components
have historically been referred to as the name, link, code, and parameter fields. No method for accessing
these fields has been found that works across all of the Forth implementations currently in use. Therefore,
a portable Forth program may not use the name, link, or code field in any way. Use of the parameter field
(renamed to data field for clarity) is limited to the operations described below.

Only words defined with CREATE or with other defining words that call CREATE have data fields. The
other defining words in the Standard (VARIABLE, CONSTANT, :, etc.) might not be implemented with
CREATE. Consequently, a Standard Program must assume that words defined by VARIABLE, CONSTANT,
:, etc., may have no data fields. There is no portable way for a Standard Program to modify the value of a
constant or to “patch” a colon definition at run time. The DOES> part of a defining word operates on a data
field, so DOES> may only be used on words ultimately defined by CREATE.

In Standard Forth, FIND, [’] and ’ (tick) return an unspecified entity called an execution token. There
are only a few things that may be done with an execution token. The token may be passed to EXECUTE
to execute the word ticked or compiled into the current definition with COMPILE,. The token can also
be stored in a variable or other data structure and used later. Finally, if the word ticked was defined via
CREATE, >BODY converts the execution token into the word’s data-field address.

An execution token cannot be assumed to be an address and may not be used as one.

D.4.2 Stacks

In some Forth implementations, it is possible to find the address of a stack in memory and manipulate the
stack as an array of cells. This technique is not portable. On some systems, especially Forth-in-hardware
systems, the stacks might be in memory that can’t be addressed by the program or might not be in memory
at all. Forth’s parameter and return stacks must be treated as stacks.

A Standard Program may use the return stack directly only for temporarily storing values. Every value
examined or removed from the return stack using R@, R>, or 2R>must have been put on the stack explicitly
using >R or 2>R. Even this must be done carefully because the system may use the return stack to hold
return addresses and loop-control parameters. Section 3.2.3.3 Return stack of the Standard has a list of
restrictions.

234

Forth 2012 RC1 D. Portability guide

D.5 Summary
The Forth Standard does not force anyone to write a portable program. In situations where performance
is paramount, the programmer is encouraged to use every trick available. On the other hand, if portability
to a wide variety of systems is needed (or anticipated), this Standard provides the tools to accomplish this.
There might be no such thing as a completely portable program. A programmer, using this guide, should
intelligently weigh the tradeoffs of providing portability to specific machines. For example, machines that
use sign-magnitude numbers are rare and probably don’t deserve much thought. But, systems with different
cell sizes will certainly be encountered and should be provided for. In general, making a program portable
clarifies both the programmer’s thinking process and the final program.

235

E. Alphabetic list of words Forth 2012 RC1

Annex E
(informative)

Alphabetic list of words
In the following list, the last, four-digit, part of the reference number establishes a sequence corresponding
to the alphabetic ordering of all standard words. The first two or three parts indicate the word set and
glossary section in which the word is defined.

6.1.0010 ! . “store” . CORE 44
6.1.0030 # . “number-sign” . CORE 44
6.1.0040 #> . “number-sign-greater” CORE 44
6.1.0050 #S . “number-sign-s” .CORE 44
6.1.0070 ’ . “tick” . CORE 44
6.1.0080 (. “paren” .CORE 45

11.6.1.0080 (. “paren” . FILE . . . 112
13.6.1.0086 (LOCAL) “paren-local-paren” LOCAL . . . 141

6.1.0090 * . “star” . CORE 45
6.1.0100 */ . “star-slash” . CORE 45
6.1.0110 */MOD “star-slash-mod” . CORE 45
6.1.0120 + . “plus” . CORE 45
6.1.0130 +! . “plus-store” . CORE 46

10.6.2.0135 +FIELD “plus-field” FACILITY EXT . . . 101
6.1.0140 +LOOP “plus-loop” . CORE 46

18.6.2.0145 +X/STRING “plus-x-string” XCHAR EXT . . . 169
6.1.0150 , . “comma” . CORE 46
6.1.0160 - . “minus” . CORE 46

17.6.1.0170 -TRAILING “dash-trailing” . STRING . . . 161
18.6.2.0175 -TRAILING-GARBAGE . . “minus-trailing-garbage” XCHAR EXT . . . 169

6.1.0180 . “dot” . CORE 46
6.1.0190 ." . “dot-quote” . CORE 47
6.2.0200 .(. “dot-paren” . CORE EXT 70
6.2.0210 .R . “dot-r” . CORE EXT 70

15.6.1.0220 .S . “dot-s” . TOOLS . . . 149
6.1.0230 / . “slash” . CORE 47
6.1.0240 /MOD . “slash-mod” . CORE 47

17.6.1.0245 /STRING “slash-string” . STRING . . . 161
6.1.0250 0< . “zero-less” .CORE 47
6.2.0260 0<> .“zero-not-equals”CORE EXT 70
6.1.0270 0= . “zero-equals” . CORE 47
6.2.0280 0> . “zero-greater” . CORE EXT 70
6.1.0290 1+ . “one-plus” . CORE 48
6.1.0300 1- . “one-minus” . CORE 48
6.1.0310 2! . “two-store” . CORE 48
6.1.0320 2* . “two-star” . CORE 48
6.1.0330 2/ . “two-slash” . CORE 48

236

Forth 2012 RC1 E. Alphabetic list of words

6.2.0340 2>R .“two-to-r” . CORE EXT 70
6.1.0350 2@ . “two-fetch” . CORE 48

8.6.1.0360 2CONSTANT “two-constant” . DOUBLE 89
6.1.0370 2DROP “two-drop” . CORE 48
6.1.0380 2DUP . “two-dupe” . CORE 49

8.6.1.0390 2LITERAL “two-literal” . DOUBLE 89
6.1.0400 2OVER “two-over” .CORE 49
6.2.0410 2R> .“two-r-from” . CORE EXT 71
6.2.0415 2R@ .“two-r-fetch”. .CORE EXT 71

8.6.2.0420 2ROT . “two-rote” . DOUBLE EXT 92
6.1.0430 2SWAP “two-swap” . CORE 49

8.6.2.0435 2VALUE “two-value”.DOUBLE EXT 92
8.6.1.0440 2VARIABLE “two-variable” . DOUBLE 90

6.1.0450 : . “colon” .CORE 49
6.2.0455 :NONAME “colon-no-name” CORE EXT 71
6.1.0460 ; . “semicolon” . CORE 49

15.6.2.0470 ;CODE “semicolon-code” TOOLS EXT . . . 150
6.1.0480 < . “less-than” .CORE 50
6.1.0490 <# . “less-number-sign” . CORE 50
6.2.0500 <> . “not-equals” . CORE EXT 71
6.1.0530 = . “equals” . CORE 50
6.1.0540 > . “greater-than” . CORE 50
6.1.0550 >BODY “to-body” .CORE 50

12.6.1.0558 >FLOAT “to-float” . FLOATING . . . 124
6.1.0560 >IN .“to-in” . CORE 50
6.1.0570 >NUMBER “to-number” . CORE 51
6.1.0580 >R . “to-r” . CORE 51

15.6.1.0600 ? . “question” . TOOLS . . . 149
6.2.0620 ?DO .“question-do” . CORE EXT 72
6.1.0630 ?DUP . “question-dupe” . CORE 51
6.1.0650 @ . “fetch” . CORE 51
6.1.0670 ABORT . CORE 51

9.6.2.0670 ABORT .EXCEPTION EXT 97
6.1.0680 ABORT" “abort-quote” . CORE 52

9.6.2.0680 ABORT" “abort-quote” EXCEPTION EXT 98
6.1.0690 ABS .“abs” . CORE 52
6.1.0695 ACCEPT . CORE 52
6.2.0698 ACTION-OF . CORE EXT 72
6.2.0700 AGAIN . CORE EXT 72

15.6.2.0702 AHEAD . TOOLS EXT . . . 150
6.1.0705 ALIGN . CORE 52
6.1.0706 ALIGNED . CORE 52

14.6.1.0707 ALLOCATE . MEMORY . . . 145
6.1.0710 ALLOT . CORE 53

16.6.2.0715 ALSO . SEARCH EXT . . . 159
6.1.0720 AND . CORE 53

237

E. Alphabetic list of words Forth 2012 RC1

15.6.2.0740 ASSEMBLER . TOOLS EXT . . . 151
10.6.1.0742 AT-XY “at-x-y” . FACILITY . . . 100

6.1.0750 BASE . CORE 53
6.1.0760 BEGIN . CORE 53

10.6.2.0763 BEGIN-STRUCTURE . FACILITY EXT . . . 101
11.6.1.0765 BIN . FILE . . . 113

6.1.0770 BL . “b-l” . CORE 53
17.6.1.0780 BLANK . STRING . . . 161
7.6.1.0790 BLK .“b-l-k” .BLOCK 84
7.6.1.0800 BLOCK . BLOCK 84
7.6.1.0820 BUFFER . BLOCK 85

6.2.0825 BUFFER: “buffer-colon” CORE EXT 73
15.6.2.0830 BYE . TOOLS EXT . . . 151

6.1.0850 C! . “c-store” . CORE 54
6.2.0855 C" . “c-quote” . CORE EXT 73
6.1.0860 C, . “c-comma” . CORE 54
6.1.0870 C@ . “c-fetch” . CORE 54
6.2.0873 CASE . CORE EXT 73

9.6.1.0875 CATCH .EXCEPTION 97
6.1.0880 CELL+ “cell-plus” . CORE 54
6.1.0890 CELLS . CORE 54

10.6.2.0893 CFIELD: “c-field-colon” FACILITY EXT . . . 102
6.1.0895 CHAR . “char” . CORE 54

18.6.2.0895 CHAR . XCHAR EXT . . . 169
6.1.0897 CHAR+ “char-plus” . CORE 55
6.1.0898 CHARS “chars” . CORE 55

11.6.1.0900 CLOSE-FILE . FILE . . . 113
17.6.1.0910 CMOVE “c-move” . STRING . . . 161
17.6.1.0920 CMOVE> “c-move-up” . STRING . . . 162
15.6.2.0930 CODE . TOOLS EXT . . . 151
17.6.1.0935 COMPARE . STRING . . . 162

6.2.0945 COMPILE, “compile-comma” CORE EXT 74
6.1.0950 CONSTANT . CORE 55
6.1.0980 COUNT . CORE 55
6.1.0990 CR . “c-r” . CORE 55
6.1.1000 CREATE . CORE 55

11.6.1.1010 CREATE-FILE . FILE . . . 113
15.6.2.1015 CS-PICK “c-s-pick” . TOOLS EXT . . . 151
15.6.2.1020 CS-ROLL “c-s-roll” . TOOLS EXT . . . 151
8.6.1.1040 D+ . “d-plus” . DOUBLE 90
8.6.1.1050 D- . “d-minus” . DOUBLE 90
8.6.1.1060 D. “d-dot” . DOUBLE 90
8.6.1.1070 D.R .“d-dot-r” . DOUBLE 90
8.6.1.1075 D0< .“d-zero-less” .DOUBLE 90
8.6.1.1080 D0= .“d-zero-equals” . DOUBLE 91
8.6.1.1090 D2* .“d-two-star” . DOUBLE 91

238

Forth 2012 RC1 E. Alphabetic list of words

8.6.1.1100 D2/ .“d-two-slash” . DOUBLE 91
8.6.1.1110 D< . “d-less-than”. .DOUBLE 91
8.6.1.1120 D= . “d-equals” . DOUBLE 91

12.6.1.1130 D>F .“d-to-f” . FLOATING . . . 125
8.6.1.1140 D>S .“d-to-s” . DOUBLE 91
8.6.1.1160 DABS . “d-abs” .DOUBLE 91

6.1.1170 DECIMAL . CORE 56
6.2.1173 DEFER . CORE EXT 74
6.2.1175 DEFER! “defer-store” . CORE EXT 74
6.2.1177 DEFER@ “defer-fetch” . CORE EXT 74

16.6.1.1180 DEFINITIONS . SEARCH . . . 157
11.6.1.1190 DELETE-FILE . FILE . . . 113

6.1.1200 DEPTH . CORE 56
12.6.2.1203 DF! .“d-f-store” FLOATING EXT . . . 129
12.6.2.1204 DF@ .“d-f-fetch” FLOATING EXT . . . 129
12.6.2.1205 DFALIGN “d-f-align” FLOATING EXT . . . 130
12.6.2.1207 DFALIGNED “d-f-aligned” FLOATING EXT . . . 130
12.6.2.1207.40 DFFIELD: “d-f-field-colon” FLOATING EXT . . . 130
12.6.2.1208 DFLOAT+ “d-float-plus” FLOATING EXT . . . 130
12.6.2.1209 DFLOATS “d-floats” FLOATING EXT . . . 130
8.6.1.1210 DMAX . “d-max” . DOUBLE 92
8.6.1.1220 DMIN . “d-min” . DOUBLE 92
8.6.1.1230 DNEGATE “d-negate” . DOUBLE 92

6.1.1240 DO . CORE 56
6.1.1250 DOES> “does”. .CORE 56
6.1.1260 DROP . CORE 57

8.6.2.1270 DU< .“d-u-less” . DOUBLE EXT 93
15.6.1.1280 DUMP . TOOLS . . . 149

6.1.1290 DUP .“dupe” . CORE 57
15.6.2.1300 EDITOR . TOOLS EXT . . . 152
10.6.2.1305 EKEY . “e-key” . FACILITY EXT . . . 102
10.6.2.1306 EKEY>CHAR “e-key-to-char” FACILITY EXT . . . 102
10.6.2.1306.40 EKEY>FKEY “e-key-to-f-key” FACILITY EXT . . . 102
18.6.2.1306.60 EKEY>XCHAR “e-key-to-x-char” XCHAR EXT . . . 170
10.6.2.1307 EKEY? “e-key-question” FACILITY EXT . . . 103

6.1.1310 ELSE . CORE 57
6.1.1320 EMIT . CORE 57

10.6.2.1325 EMIT? “emit-question” FACILITY EXT . . . 103
7.6.2.1330 EMPTY-BUFFERS . BLOCK EXT 86

10.6.2.1336 END-STRUCTURE . FACILITY EXT . . . 103
6.2.1342 ENDCASE “end-case” . CORE EXT 74
6.2.1343 ENDOF “end-of” .CORE EXT 75
6.1.1345 ENVIRONMENT? “environment-query” CORE 58
6.2.1350 ERASE . CORE EXT 75
6.1.1360 EVALUATE . CORE 58

7.6.1.1360 EVALUATE . BLOCK 85

239

E. Alphabetic list of words Forth 2012 RC1

6.1.1370 EXECUTE . CORE 58
6.1.1380 EXIT . CORE 58

12.6.1.1400 F! . “f-store” . FLOATING . . . 125
12.6.1.1410 F* . “f-star” . FLOATING . . . 125
12.6.2.1415 F** .“f-star-star” FLOATING EXT . . . 130
12.6.1.1420 F+ . “f-plus” . FLOATING . . . 125
12.6.1.1425 F- . “f-minus” . FLOATING . . . 125
12.6.2.1427 F. “f-dot” . FLOATING EXT . . . 131
12.6.1.1430 F/ . “f-slash” . FLOATING . . . 125
12.6.1.1440 F0< .“f-zero-less-than” FLOATING . . . 125
12.6.1.1450 F0= .“f-zero-equals” FLOATING . . . 125
12.6.1.1460 F< . “f-less-than” . FLOATING . . . 126
12.6.1.1470 F>D .“f-to-d”. .FLOATING . . . 126
12.6.2.1471 F>S .“f-to-s” . FLOATING EXT . . . 131
12.6.1.1472 F@ . “f-fetch” . FLOATING . . . 126
12.6.2.1474 FABS . “f-abs” . FLOATING EXT . . . 131
12.6.2.1476 FACOS “f-a-cos” FLOATING EXT . . . 131
12.6.2.1477 FACOSH “f-a-cosh” FLOATING EXT . . . 131
12.6.1.1479 FALIGN “f-align” . FLOATING . . . 126
12.6.1.1483 FALIGNED “f-aligned” . FLOATING . . . 126
12.6.2.1484 FALOG “f-a-log”.FLOATING EXT . . . 131

6.2.1485 FALSE . CORE EXT 75
12.6.2.1486 FASIN “f-a-sine” FLOATING EXT . . . 132
12.6.2.1487 FASINH “f-a-cinch”.FLOATING EXT . . . 132
12.6.2.1488 FATAN “f-a-tan” . FLOATING EXT . . . 132
12.6.2.1489 FATAN2 “f-a-tan-two”.FLOATING EXT . . . 132
12.6.2.1491 FATANH “f-a-tan-h” FLOATING EXT . . . 132
12.6.1.1492 FCONSTANT “f-constant” . FLOATING . . . 126
12.6.2.1493 FCOS . “f-cos” . FLOATING EXT . . . 132
12.6.2.1494 FCOSH “f-cosh” . FLOATING EXT . . . 132
12.6.1.1497 FDEPTH “f-depth” . FLOATING . . . 126
12.6.1.1500 FDROP “f-drop” . FLOATING . . . 127
12.6.1.1510 FDUP . “f-dupe” . FLOATING . . . 127
12.6.2.1513 FE. .“f-e-dot” .FLOATING EXT . . . 133
12.6.2.1515 FEXP . “f-e-x-p” FLOATING EXT . . . 133
12.6.2.1516 FEXPM1 “f-e-x-p-m-one” FLOATING EXT . . . 133
12.6.2.1517 FFIELD: “f-field-colon” FLOATING EXT . . . 133
10.6.2.1518 FIELD: “field-colon” FACILITY EXT . . . 103
11.6.1.1520 FILE-POSITION . FILE . . . 113
11.6.1.1522 FILE-SIZE . FILE . . . 113
11.6.2.1524 FILE-STATUS . FILE EXT . . . 118

6.1.1540 FILL . CORE 59
6.1.1550 FIND . CORE 59

16.6.1.1550 FIND . SEARCH . . . 157
12.6.1.1552 FLITERAL “f-literal” . FLOATING . . . 127
12.6.2.1553 FLN .“f-l-n” . FLOATING EXT . . . 133

240

Forth 2012 RC1 E. Alphabetic list of words

12.6.2.1554 FLNP1 “f-l-n-p-one” FLOATING EXT . . . 134
12.6.1.1555 FLOAT+ “float-plus” . FLOATING . . . 127
12.6.1.1556 FLOATS . FLOATING . . . 127
12.6.2.1557 FLOG . “f-log” . FLOATING EXT . . . 134
12.6.1.1558 FLOOR . FLOATING . . . 127

7.6.1.1559 FLUSH . BLOCK 85
11.6.2.1560 FLUSH-FILE . FILE EXT . . . 118

6.1.1561 FM/MOD “f-m-slash-mod” . CORE 59
12.6.1.1562 FMAX . “f-max” . FLOATING . . . 127
12.6.1.1565 FMIN . “f-min” . FLOATING . . . 128
12.6.1.1567 FNEGATE “f-negate” . FLOATING . . . 128
15.6.2.1580 FORGET . TOOLS EXT . . . 152
16.6.2.1590 FORTH . SEARCH EXT . . . 159
16.6.1.1595 FORTH-WORDLIST . SEARCH . . . 157
12.6.1.1600 FOVER “f-over” . FLOATING . . . 128
14.6.1.1605 FREE . MEMORY . . . 145
12.6.1.1610 FROT . “f-rote” . FLOATING . . . 128
12.6.1.1612 FROUND “f-round” . FLOATING . . . 128
12.6.2.1613 FS. .“f-s-dot” . FLOATING EXT . . . 134
12.6.2.1614 FSIN . “f-sine” .FLOATING EXT . . . 134
12.6.2.1616 FSINCOS “f-sine-cos” FLOATING EXT . . . 134
12.6.2.1617 FSINH “f-cinch” FLOATING EXT . . . 134
12.6.2.1618 FSQRT “f-square-root” FLOATING EXT . . . 135
12.6.1.1620 FSWAP “f-swap”. .FLOATING . . . 128
12.6.2.1625 FTAN . “f-tan” . FLOATING EXT . . . 135
12.6.2.1626 FTANH “f-tan-h”.FLOATING EXT . . . 135
12.6.2.1627 FTRUNC “f-trunc”.FLOATING EXT . . . 135
12.6.2.1628 FVALUE “f-value” FLOATING EXT . . . 135
12.6.1.1630 FVARIABLE “f-variable” . FLOATING . . . 128
12.6.2.1640 F~ . “f-proximate” FLOATING EXT . . . 135
16.6.1.1643 GET-CURRENT . SEARCH . . . 158
16.6.1.1647 GET-ORDER . SEARCH . . . 158

6.1.1650 HERE . CORE 59
6.2.1660 HEX . CORE EXT 75
6.1.1670 HOLD . CORE 59
6.2.1675 HOLDS . CORE EXT 75
6.1.1680 I . CORE 59
6.1.1700 IF . CORE 60
6.1.1710 IMMEDIATE . CORE 60

11.6.2.1714 INCLUDE . FILE EXT . . . 118
11.6.1.1717 INCLUDE-FILE . FILE . . . 114
11.6.1.1718 INCLUDED . FILE . . . 114

6.1.1720 INVERT . CORE 60
6.2.1725 IS . CORE EXT 76
6.1.1730 J . CORE 60

10.6.2.1740.01 K-ALT-MASK . FACILITY EXT . . . 104

241

E. Alphabetic list of words Forth 2012 RC1

10.6.2.1740.02 K-CTRL-MASK . FACILITY EXT . . . 104
10.6.2.1740.03 K-DELETE . FACILITY EXT . . . 104
10.6.2.1740.04 K-DOWN . FACILITY EXT . . . 104
10.6.2.1740.05 K-END . FACILITY EXT . . . 104
10.6.2.1740.06 K-F1 . “k-f-1” . FACILITY EXT . . . 105
10.6.2.1740.07 K-F10 “k-f-10” . FACILITY EXT . . . 105
10.6.2.1740.08 K-F11 “k-f-11” . FACILITY EXT . . . 105
10.6.2.1740.09 K-F12 “k-f-12” . FACILITY EXT . . . 105
10.6.2.1740.10 K-F2 . “k-f-2” . FACILITY EXT . . . 105
10.6.2.1740.11 K-F3 . “k-f-3” . FACILITY EXT . . . 105
10.6.2.1740.12 K-F4 . “k-f-4” . FACILITY EXT . . . 106
10.6.2.1740.13 K-F5 . “k-f-5” . FACILITY EXT . . . 106
10.6.2.1740.14 K-F6 . “k-f-6” . FACILITY EXT . . . 106
10.6.2.1740.15 K-F7 . “k-f-7” . FACILITY EXT . . . 106
10.6.2.1740.16 K-F8 . “k-f-8” . FACILITY EXT . . . 106
10.6.2.1740.17 K-F9 . “k-f-9” . FACILITY EXT . . . 106
10.6.2.1740.18 K-HOME . FACILITY EXT . . . 107
10.6.2.1740.19 K-INSERT . FACILITY EXT . . . 107
10.6.2.1740.20 K-LEFT . FACILITY EXT . . . 107
10.6.2.1740.21 K-NEXT . FACILITY EXT . . . 107
10.6.2.1740.22 K-PRIOR . FACILITY EXT . . . 107
10.6.2.1740.23 K-RIGHT . FACILITY EXT . . . 107
10.6.2.1740.24 K-SHIFT-MASK . FACILITY EXT . . . 108
10.6.2.1740.25 K-UP . FACILITY EXT . . . 108

6.1.1750 KEY . CORE 60
10.6.1.1755 KEY? . “key-question” . FACILITY . . . 101

6.1.1760 LEAVE . CORE 61
7.6.2.1770 LIST . BLOCK EXT 86

6.1.1780 LITERAL . CORE 61
7.6.1.1790 LOAD . BLOCK 85

13.6.2.1795 LOCALS| “locals-bar” . LOCAL EXT . . . 142
6.1.1800 LOOP . CORE 61
6.1.1805 LSHIFT “l-shift” . CORE 62
6.1.1810 M* . “m-star” . CORE 62

8.6.1.1820 M*/ .“m-star-slash” . DOUBLE 92
8.6.1.1830 M+ . “m-plus” . DOUBLE 92

6.2.1850 MARKER . CORE EXT 76
6.1.1870 MAX . CORE 62
6.1.1880 MIN . CORE 62
6.1.1890 MOD . CORE 62
6.1.1900 MOVE . CORE 62

10.6.2.1905 MS . FACILITY EXT . . . 108
15.6.2.1908 N>R .“n-to-r” . TOOLS EXT . . . 152

6.1.1910 NEGATE . CORE 63
6.2.1930 NIP . CORE EXT 76

15.6.2.1940 NR> .“n-r-from” . TOOLS EXT . . . 153

242

Forth 2012 RC1 E. Alphabetic list of words

6.2.1950 OF . CORE EXT 76
16.6.2.1965 ONLY . SEARCH EXT . . . 159
11.6.1.1970 OPEN-FILE . FILE . . . 115

6.1.1980 OR . CORE 63
16.6.2.1985 ORDER . SEARCH EXT . . . 159

6.1.1990 OVER . CORE 63
6.2.2000 PAD . CORE EXT 77

10.6.1.2005 PAGE . FACILITY . . . 101
6.2.2008 PARSE . CORE EXT 77

18.6.2.2008 PARSE . XCHAR EXT . . . 170
6.2.2020 PARSE-NAME . CORE EXT 77
6.2.2030 PICK . CORE EXT 77
6.1.2033 POSTPONE . CORE 63

12.6.2.2035 PRECISION . FLOATING EXT . . . 136
16.6.2.2037 PREVIOUS . SEARCH EXT . . . 159

6.1.2050 QUIT . CORE 63
11.6.1.2054 R/O .“r-o” . FILE . . . 115
11.6.1.2056 R/W .“r-w” . FILE . . . 115

6.1.2060 R> . “r-from” . CORE 63
6.1.2070 R@ . “r-fetch” . CORE 64

11.6.1.2080 READ-FILE . FILE . . . 115
11.6.1.2090 READ-LINE . FILE . . . 116

6.1.2120 RECURSE . CORE 64
6.2.2125 REFILL . CORE EXT 77

7.6.2.2125 REFILL . BLOCK EXT 86
11.6.2.2125 REFILL . FILE EXT . . . 119
11.6.2.2130 RENAME-FILE . FILE EXT . . . 119

6.1.2140 REPEAT . CORE 64
17.6.2.2141 REPLACES . STRING EXT . . . 163
11.6.1.2142 REPOSITION-FILE . FILE . . . 116
12.6.1.2143 REPRESENT . FLOATING . . . 129
11.6.2.2144.10 REQUIRE . FILE EXT . . . 119
11.6.2.2144.50 REQUIRED . FILE EXT . . . 119
14.6.1.2145 RESIZE . MEMORY . . . 146
11.6.1.2147 RESIZE-FILE . FILE . . . 116

6.2.2148 RESTORE-INPUT . CORE EXT 78
6.2.2150 ROLL . CORE EXT 78
6.1.2160 ROT .“rote” . CORE 64
6.1.2162 RSHIFT “r-shift” . CORE 64
6.1.2165 S" . “s-quote” . CORE 65

11.6.1.2165 S" . “s-quote” . FILE . . . 117
6.1.2170 S>D .“s-to-d” . CORE 65

12.6.2.2175 S>F .“s-to-f” . FLOATING EXT . . . 136
7.6.1.2180 SAVE-BUFFERS . BLOCK 85

6.2.2182 SAVE-INPUT . CORE EXT 79
7.6.2.2190 SCR .“s-c-r” . BLOCK EXT 86

243

E. Alphabetic list of words Forth 2012 RC1

17.6.1.2191 SEARCH . STRING . . . 162
16.6.1.2192 SEARCH-WORDLIST . SEARCH . . . 158
15.6.1.2194 SEE . TOOLS . . . 149
16.6.1.2195 SET-CURRENT . SEARCH . . . 158
16.6.1.2197 SET-ORDER . SEARCH . . . 158
12.6.2.2200 SET-PRECISION . FLOATING EXT . . . 136
12.6.2.2202 SF! .“s-f-store” FLOATING EXT . . . 136
12.6.2.2203 SF@ .“s-f-fetch” FLOATING EXT . . . 136
12.6.2.2204 SFALIGN “s-f-align” FLOATING EXT . . . 137
12.6.2.2206 SFALIGNED “s-f-aligned” FLOATING EXT . . . 137
12.6.2.2206.40 SFFIELD: “s-f-field-colon” FLOATING EXT . . . 137
12.6.2.2207 SFLOAT+ “s-float-plus” FLOATING EXT . . . 137
12.6.2.2208 SFLOATS “s-floats” FLOATING EXT . . . 137

6.1.2210 SIGN . CORE 65
17.6.1.2212 SLITERAL . STRING . . . 162

6.1.2214 SM/REM “s-m-slash-rem” . CORE 65
6.1.2216 SOURCE . CORE 65
6.2.2218 SOURCE-ID “source-i-d” . CORE EXT 79

11.6.1.2218 SOURCE-ID “source-i-d” . FILE . . . 117
6.1.2220 SPACE . CORE 65
6.1.2230 SPACES . CORE 66
6.1.2250 STATE . CORE 66

15.6.2.2250 STATE . TOOLS EXT . . . 153
17.6.2.2255 SUBSTITUTE . STRING EXT . . . 163

6.1.2260 SWAP . CORE 66
15.6.2.2264 SYNONYM . TOOLS EXT . . . 153

6.2.2266 S\" .“s-backslash-quote” CORE EXT 78
6.1.2270 THEN . CORE 66

9.6.1.2275 THROW .EXCEPTION 97
7.6.2.2280 THRU . BLOCK EXT 87

10.6.2.2292 TIME&DATE “time-and-date” FACILITY EXT . . . 108
6.2.2295 TO . CORE EXT 79
6.2.2298 TRUE . CORE EXT 80
6.2.2300 TUCK . CORE EXT 80
6.1.2310 TYPE . CORE 66
6.1.2320 U. “u-dot” . CORE 67
6.2.2330 U.R .“u-dot-r” . CORE EXT 80
6.1.2340 U< . “u-less-than” . CORE 67
6.2.2350 U> . “u-greater-than” CORE EXT 80
6.1.2360 UM* .“u-m-star” . CORE 67
6.1.2370 UM/MOD “u-m-slash-mod” . CORE 67

17.6.2.2375 UNESCAPE . STRING EXT . . . 164
6.1.2380 UNLOOP . CORE 67
6.1.2390 UNTIL . CORE 67
6.2.2395 UNUSED . CORE EXT 80

7.6.1.2400 UPDATE . BLOCK 86

244

Forth 2012 RC1 E. Alphabetic list of words

6.2.2405 VALUE . CORE EXT 81
6.1.2410 VARIABLE . CORE 68

11.6.1.2425 W/O .“w-o” . FILE . . . 117
6.1.2430 WHILE . CORE 68
6.2.2440 WITHIN . CORE EXT 81
6.1.2450 WORD . CORE 68

16.6.1.2460 WORDLIST . SEARCH . . . 158
15.6.1.2465 WORDS . TOOLS . . . 149
11.6.1.2480 WRITE-FILE . FILE . . . 117
11.6.1.2485 WRITE-LINE . FILE . . . 118
18.6.1.2486.50 X-SIZE . XCHAR . . . 168
18.6.2.2486.70 X-WIDTH . XCHAR EXT . . . 170
18.6.1.2487.10 XC!+ . “x-c-store-plus” . XCHAR . . . 168
18.6.1.2487.15 XC!+? “x-c-store-plus-query” XCHAR . . . 168
18.6.1.2487.20 XC, .“x-c-comma” . XCHAR . . . 168
18.6.1.2487.25 XC-SIZE “x-c-size” .XCHAR . . . 168
18.6.2.2487.30 XC-WIDTH “x-c-width” . XCHAR EXT . . . 170
18.6.1.2487.35 XC@+ . “x-c-fetch-plus” . XCHAR . . . 168
18.6.1.2487.40 XCHAR+ “x-char-plus” . XCHAR . . . 168
18.6.2.2487.45 XCHAR- “x-char-minus” XCHAR EXT . . . 170
18.6.1.2488.10 XEMIT “x-emit” . XCHAR . . . 169
18.6.2.2488.20 XHOLD “x-hold” . XCHAR EXT . . . 170
18.6.1.2488.30 XKEY . “x-key” . XCHAR . . . 169
18.6.1.2488.35 XKEY? “x-key-query” . XCHAR . . . 169

6.1.2490 XOR .“x-or” . CORE 69
18.6.2.2495 X\STRING- “x-string-minus” XCHAR EXT . . . 171

6.1.2500 [. “left-bracket” . CORE 69
6.1.2510 [’] .“bracket-tick” . CORE 69
6.1.2520 [CHAR] “bracket-char” . CORE 69

18.6.2.2520 [CHAR] “bracket-char” XCHAR EXT . . . 171
6.2.2530 [COMPILE] “bracket-compile” CORE EXT 81

15.6.2.2530.30 [DEFINED] “bracket-defined” TOOLS EXT . . . 153
15.6.2.2531 [ELSE] “bracket-else”.TOOLS EXT . . . 154
15.6.2.2532 [IF] . “bracket-if” .TOOLS EXT . . . 154
15.6.2.2533 [THEN] “bracket-then” TOOLS EXT . . . 154
15.6.2.2534 [UNDEFINED] “bracket-undefined” TOOLS EXT . . . 154

6.2.2535 \ . “backslash” . CORE EXT 81
7.6.2.2535 \ . “backslash” . BLOCK EXT 87

6.1.2540] . “right-bracket” . CORE 70
13.6.2.2550 {: . “brace-colon” LOCAL EXT . . . 142

245

	Contents
	Foreword
	Foreword to ANS Forth
	Proposals Process
	200x Membership

	Introduction
	Purpose
	Scope
	Document organization
	Future directions

	Terms, notation, and references
	Definitions of terms
	Notation
	References

	Usage requirements
	Data types
	The implementation environment
	The Forth dictionary
	The Forth text interpreter

	Documentation requirements
	System documentation
	Program documentation

	Compliance and labeling
	Forth-2012 systems
	Forth-2012 programs

	Glossary
	Core words
	Core extension words

	The optional Block word set
	Introduction
	Additional terms
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Double-Number word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Exception word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Facility word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional File-Access word set
	Introduction
	Additional terms
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Floating-Point word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Locals word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Memory-Allocation word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Programming-Tools word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Search-Order word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional String word set
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	The optional Extended Characters wordset
	Introduction
	Additional terms and notation
	Additional usage requirements
	Additional documentation requirements
	Compliance and labeling
	Glossary

	Rationale
	Introduction
	Terms and notation
	Usage requirements
	Documentation requirements
	Compliance and labeling
	Glossary
	The optional Block word set
	The optional Double-Number word set
	The optional Exception word set
	The optional Facility word set
	The optional File-Access word set
	The optional Floating-Point word set
	The optional Locals word set
	The optional Memory-Allocation word set
	The optional Programming-Tools word set
	The optional Search-Order word set
	The optional String word set
	The optional Extended-Character word set

	Bibliography
	Compatibility analysis
	FIG Forth (circa 1978)
	Forth 79
	Forth 83
	ANS Forth (1994)
	ISO Forth (1997)
	Approach of this Standard
	Differences from Forth 94
	Additional words

	Portability guide
	Introduction
	Hardware peculiarities
	Number representation
	Forth system implementation
	Summary

	Alphabetic list of words

